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Abstract. In this work, we propose a SaaS model that provides service to ordi-
nary investors, unfamiliar with finance models, to evaluate the price of an option
that is currently being traded before taking a decision to enter into a contract. In
this model, investors may approach a financial Cloud Service Provider (CSP) to
compute the option price with time and/or accuracy constraints. The option pric-
ing algorithms are not only computationally intensive but also communication
intensive. Therefore, one of the key components of the methodology presented in
this paper is the topology-aware communication between tasks and scheduling of
tasks in virtual machines with the goal of reducing the latency of communication
between tasks. We perform various experiments to evaluate how our model can
map the tasks efficiently to reduce communication latency, hide network latency
ensuring that all virtual machines are busy increasing response time of users.

1 Introduction

Cloud computing offers on-demand software service to customers without having the
customer know the inner details of the software or IT infrastructure used for their ser-
vice. Businesses outsource their computing needs to the Cloud to avoid investing in
infrastructure and maintenance. The charges they pay to Cloud providers are generally
seen as economical while considering the cost that they would incur having the infras-
tructure in-house. One sector that can significantly benefit from Cloud is the financial
sector.
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Fig. 1. Financial Service Provisioning in the Cloud.

For example, an investor would be interested in obtaining information that would
help in making decision whether to buy a stock at a future date, at a particular price
based on some basic information available in public such as Yahoo!Finance. This kind
of future investment is referred to as a option. This requires knowledge of the current
stock price, stock volatility and the proper time to exercise the stock for profit. There
are many algorithms [5, 7, 3] to price an option. In finance, this problem is called an
option pricing problem.

Investors interested in pricing an option would need to have working knowledge
of these algorithms to help them take an informative decision on computing the option
prices. The algorithms used in the option pricing problem are computationally intensive
and require parallel processing to obtain results in real time. These computations are
very complicated for an investor who is not familiar with the algorithms. The option
pricing problem, falls under the category high performance computing applications and
several works have already been done in this area [12].

In this study, we propose a SaaS model that provides service to ordinary investors,
unfamiliar with finance models, to evaluate an option that is currently being traded
before taking a decision to enter into a contract. This provider owns the data center
infrastructure and uses it to host the Financial SaaS.

In our SaaS Model (Figure 1), decision on the kernel (option pricing algorithm)
to be deployed for a user request, number of tasks to be generated for such request,
number of resources to be assigned to the request, and which resources to serve the
request is performed at the PaaS level: SaaS requests received from users are forwarded
to the PaaS component that make such decisions, which in turn deploys the tasks to the
available infrastructure (IaaS). Note that if the SaaS service were offered by a provider
that does not own the infrastructure, a fine control over the platform that enables better
QoS for investors would be hard to achieve.

To our knowledge no work exists that addresses the need for decision making ser-
vice involving financial instruments on Cloud. Contributions of the paper are: (a) Mak-
ing decision on a particular financial model to use that would best fit the user’s re-
quirements and constraints. (b) Satisfying investors constraints on time deadline and
accuracy. (c) Mapping the tasks to appropriate VMs considering various latencies. (d)
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Optimizing the number of request processed per second considering HPC nature of the
particular algorithm being considered for option pricing.

We organize the rest of the paper as follows. In section 2 we discuss financial option
and task scheduling on Cloud. In Section 3, we describe our system model and in Sec-
tion 4 we present our algorithm for evaluation of the algorithms on Cloud. In Section 5
we describe the results and conclude in Section 6.

2 Background and Related Work

In this section, we discuss financial options and a literature survey of task scheduling
on Clouds.

Financial Options: Formally, an option is a contract in which the buyer (generally
known as the option holder) of an option has the right but without any obligation to
buy (with call option) or sell (with put option) an underlying asset (for example, a
stock) at a predetermined price (strike price, K) on or before a specified date (expiration
date, T). The seller (known as writer) has the obligation to honor the terms specified
in the option contract. The holder pays a premium to the writer (see for example [8]).
An European option can be exercised only at the expiration date whereas an American
option may be exercised on any date before the expiration date. We have considered four
different algorithms in this study for implementing on the CSP side to render option
pricing services: Binomial Lattice [7, 13], Monte-Carlo simulation [3], Fast Fourier
Transform [5] and Finite-Difference technique [14].

Task Scheduling on Cloud: A key component of the methodology presented in this
paper is the topology-aware communication between tasks and scheduling of tasks in
VMs with the goal of reducing the latency of communication between tasks. Kandalla
et al. [9] proposed topology-aware algorithms for communication between MPI tasks.
However, this approach does not consider virtualized data centers as the underlying
hardware infrastructure supporting the application and therefore, cannot be directly ap-
plied in our proposed solution. Volckaert et al. [15], proposed a network-aware task
scheduling algorithm on grids following an embarrassingly parallel (bag of tasks) ap-
proach, which is not applicable to financial applications that introduce communication
overhead between tasks. Lee et al. [10] proposed a topology-aware resource alloca-
tion mechanism for IaaS Clouds using genetic algorithm to find the optimal placement
of tasks to machines which again follows an embarassignly parallel approach. Coti et
al. [6] proposed topology-aware scheduling of MPI applications on Grids which cannot
be directly applicable to Cloud.

3 System Model

Customers of SaaS provider (CSP) are investors who need to evaluate (the price of) an
option that is currently being traded before taking a decision to enter into a contract
or not. Our proposed system model will be able to provide information as whether the
entering the option contract could be profitable. For this purpose, the CSP in our model
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uses one of the four algorithms for option pricing: fast Fourier transform (FFT), finite-
difference (FD), binomial lattice, and Monte-Carlo simulation. Each of these algorithms
is representative of typical HPC applications with their different computation and com-
munication needs. The customers’ request for resource contains: service description,
required accuracy, and deadline for service response. Each of the option pricing algo-
rithms has different processing times which affects service deadline. Also, each algo-
rithm provides an accuracy different from another. Therefore, customers are charged
for the service depending on the required accuracy and service deadline. Each customer
may have their own parameters or input for an option. For example, the current stock
price (S), strike price in the contract (K), volatility of the asset (σ), expiration time
in years T , and current interest rate (r). These parameters are provided as service de-
scription to the CSP. Another important parameter is the number of time steps N . For
example, in the binomial lattice algorithm, increasing the number of time steps, makes
the problem more fine-grained providing more accurate results. However, this increases
processing time. The CSP executes customers’ requests at its own data center. With this

Fig. 2. System Model.

model, the service provider can ensure the secrecy of the models they use to provide
service to their customers, which can be more accurate than models available with other
CSP.

The system architecture that can support the described scenario is depicted in Fig-
ure 2, and contains two main components, namely option price broker and data center.

The option price broker receives user requests, analyzes them, and submits them
to the data center. It keeps information about resource availability and number of re-
quests being processed. It processes each request in three distinct phases: (i) defines
the preferred order of execution of algorithms based on request’s accuracy and dead-
line; (ii) searches for a mapping of tasks to VMs considering the preferred order of
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algorithms: that is, if it is unable to accommodate a set of VMs for its first choice al-
gorithm, it evaluates the possibility of the second algorithm; (iii) maps the tasks based
on their communication requirement, on the VM’s network topology, and on memory
requirements.

The data center handles the actual execution of tasks that represent user requests.
The data center network topology considered in this paper assumes servers placed in
racks are connected using edge and aggregation switches and core routers. In this pa-
per, we assume static routing inside the data center. The fat tree topology on which
the servers are organized can be over-subscribed depending on the number of servers
connected to the edge switch. Moreover, each server hosts 2k VMs where k can be
predetermined by the provider.

4 Algorithm and Evaluation

In this section, we discuss the mechanism for processing user requests. Each request
has the form (OptV ariablesi, Ai, di), where OptV ariablesi are the variables for cal-
culating option pricing, Ai is the required accuracy and di is the service deadline by
which user is expecting the results. The option price broker performs three phases of
computations:

4.1 Phase 1: Algorithm Decision

In this step, the broker decides which algorithm to use to service the customers request.
This depends on the desired accuracy and service deadline.

Table 1. Rank of techniques for accuracy requirements.

Low (0-50%) Medium (50-70%) High (70-100%)
Binomial 2 1 3

Monte-Carlo 1 2 4
Finite Diff. 3 3 1

FFT 4 4 2

To determine which algorithm provides better accuracy, the CSP considers a pre-
computed table, derived from benchmark results of the algorithms. In Table 1, each of
the algorithm used in this study is ranked (1 is highest and 4 is lowest) according to
three accuracy levels: low, medium and high. This is derived from our previous experi-
ence [11] of running these algorithms on different platforms. Similarly, Table 2 depicts
the ranks of these algorithms in terms of the execution time. For example, if a customer
requires high accuracy but has a relaxed (large) deadline, then finite-difference tech-
nique is chosen as the preferred algorithm to compute the option prices. However, if a
user needs high accuracy and has a tight deadline, the request is rejected. Note, that the
four algorithms are ranked based on the request characteristics and this is the order that
will be considered.
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Table 2. Rank of techniques for timing requirements.

Low (quicker) Medium (moderate) High (large)
Binomial 1 2 4

Monte-Carlo 2 1 3
Finite Diff. 4 4 1

FFT 3 3 2

Since these algorithms are also communication intensive, some thought needs to be
given to the communication structure of the algorithms to better schedule them on the
VMs. For FFT, we follow the Cooley-Tukey butterfly algorithm [2]. The parallel FFT al-
gorithm requires logP communications and logN− logP computations. Therefore, the
execution time of each task is given by tcomputation∗(logN−logP )+tcommunication∗
logP , where N is number of elements (or time steps) and P is the number of VMs.

The option price broker also makes a decision on the number of VMs required to
execute tasks for ensuring its completion within the deadline.

4.2 Phase 2: Virtual Machines Selection

In this phase, the option price broker decides on the set of VMs needed to execute
the algorithm selected in phase 1. As mentioned earlier, each server in the data center
hosts 2k VMs. Moreover, each algorithm has communication and computation needs
that have to be met by the internal network topology and server resources, respectively.
Since the data center runs several requests/algorithms simultaneously, the broker selects
a set of VMs for an incoming request in such a way that the communication overhead is
minimized. For example, if FFT is being considered to be executed, the broker tries to
select VMs that belong to the same server or whose servers are positioned in the same
rack. This ensures data locality. Therefore, the broker adopts the following strategy for
VM selection. Let the number of VMs required by the request i for given accuracy
level Ai and deadline di, be numVmReqi. This is assumed to be a power of two. Let
EstExTimei be the estimated execution time of each task. The following mapping
strategies are used to schedule different algorithms.

For FFT, tasks have to be confined to the same server or rack. The selection of VMs
for this algorithm is described in Algorithm 1. For Finite-Difference technique, since
communication is only between neighbouring taks, there is no restriction about VM
placement, and the mapping is described in Algorithm 2. Finally, in the case of Monte-
Carlo and Binomial Lattice, that are loosely-coupled algorithms, tasks are distributed
in a round-robin strategy.

4.3 Phase 3: Mapping tasks to selected VMs

In this phase, the actual scheduling of each task from various applications to VMs takes
place, following the decisions made in the previous phases. The mapping considers
communication between tasks.
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Algorithm 1: Mapping of tasks to VMs in the FFT algorithm.
numHostReqi = numVmReqi/2

k;
foreach edge switch do

Search numHostReqi available servers that can process the job within deadline;
if servers are found then

map tasks to VMs based on network topology required for communication;
exit;

end
else

search for numVmReqi available VMs in a same rack;
if VMs are found then

map tasks to VMs based on network topology required for communication;
exit;

end
else

try the next algorithm in the priority list;
end

end
end

Algorithm 2: Mapping of tasks to VMs in the FD algorithm.
numHostReqi = numVmReqi/2

k;
foreach edge switch do

search for numVmReqi available VMs in a same rack;
if VMs are found then

map tasks to VMs based on network topology required for communication;
end
else

search for numHostReqi servers that can process the job within deadline;
if servers are found then

map tasks to VMs based on network topology required for communication;
end
else

try the next algorithm in the priority list;
end

end
end
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5 Results and Discussions

This section presents the performance results of our proposed algorithm to enable Op-
tion Pricing as Cloud Software service. We simulated a SaaS Cloud scenario using
CloudSim [4]. We compare our mechanism to a general approach of deploying the VMs
across a data center without any knowledge of network and application requirements.
We call this approach as BlindMethod. In phase 2 using this mehtod, tasks are ran-
domly assigned to VMs. The simulation design reflects configurations that are similar
to actual data centers and can determine the performance of our proposed mechanism
(computation strategy).

5.1 Option Pricing SaaS provider’s configuration

Current Cloud data centers generally contain commodity hardware with hierarchical
tree network topology [1]. Therefore, in our experiments each simulated server is equiv-
alent to a Intel Core i7-920 with 4 cores and 8 threads (virtual cores), 2.66 Ghz with 8
GB RAM. We have deployed two VMs per server each with 4 cores and 4 GB RAM.
Each server is connected to the edge network with 1 Gigabit Ethernet link. Servers are
placed in racks, and each rack has one edge switch. We have one 4-port root switch,
four 2-port aggregate switch with one up link and eight edge switches. The edge and
aggregate switches are connected by 10 Gigabit Ethernet links. The network bandwidth
between aggregate switches is 20 Gbps. The default number of servers in each rack
is 10, therefore 160 VMs are simulated. The switching delays for different number of
hops are based on the work by Kandalla et al. [9], i.e. intra rack communication delay is
1.57µsec, delay due to communication through aggregate switch is 2.45µsec and delay
due to communication through root switch is 2.85µsec. To estimate the execution time
of different algorithms we run different set of experiments using all four option pricing
algorithms on a Intel Core i7-920 4cores/8thread (virtual cores), 2.66 Ghz with 8GB
RAM machine.

5.2 Option Pricing Request Generation

Since there is no trace available from data centers running financial applications, we
generated different types of requests using uniform distribution for varying option pric-
ing inputs, accuracy (low, medium, high) and deadline (low, medium, high) require-
ments. The arrival rate of customer requests is 10000 requests per second.

5.3 Performance Metrics and Experimental Scenarios

We use two metrics to evaluate our computation strategy: average processing time and
network overhead. The average processing time indicates how fast our mechanism can
process user requests, which is an important quality of service metric for any SaaS
provider. The network overhead indicates how much data is transferred through the
edge switches and it shows the importance of the network topology and application for
scheduling tasks. We considered the following aspects in the experiments: (i) Effect of
different mixture of requests in terms of accuracy, and (ii) Effect of different arrival
rates of requests.
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Fig. 3. Effect of Accuracy Requirements of Requests

5.4 Analysis of Results

Effect of Change in Accuracy Requirements Figure 3 presents how accuracy re-
quirement of requests affect the performance of our proposed algorithm. Figure 3(a) ,
(b) and (c) present respectively data transfer, response time, and option algorithms used
for our strategy (called NetAwareSaaS in the figure), respectively, in comparison to
BlindMethod, considering different rate of requests for accuracy levels. In these fig-
ures, x%,y%,z% represents the scenario where x% of requests are for low accuracy
results, y% of requests are for medium accuracy results and z% of requests are for high
accuracy results.

Results show that our strategy reduces network overhead due to data transfer and
response time of requests, and response times and data transfers are barely affected
by different mixes of accuracy, compared to the BlindMethod strategy. This is due
to network aware allocation of resources to serve the customer requests. Since most
of the requests in BlindMethod strategy are assigned to VMs which belongs to differ-
ent switches, more data communication delays resulted in more processing time. Other
than this, Figure 3(c) also indicate how different ratio of accuracy requested by cus-
tomers affect the choice of algorithms used for computing the option price. For instance,
when 70% of requests asks for low accuracy, the large data communication is due to
binomial lattice algorithm which requires about four VMs to process the customer’s
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request. When 70% of requests is for medium accuracy, the monte carlo algorithm is
used which has low communication needs but high computation time. When 70% of
request required high accuracy, the amount of data transferred across the switches is
quite high in case of BlindMethod strategy due to finite-difference algorithm which has
much higher data transfer requirement than any other algorithm. This also has impact
on the average processing time for a request due to delays in data transfer.
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Fig. 4. Effect of Request Arrival Rate

Effect of Change in Request Arrival Rate Figure 4 presents how arrival rate of
requests affect the performance of our proposed algorithm. Figure 4(a) , (b) and (c)
present respectively data transfer, response time, and option algorithms used for our
strategy (called NetAwareSaaS in the figure) and BlindMethod, considering dif-
ferent arrival rate of requests. In the figure, low , medium, high represents the sce-
nario where 100 requests/sec, 1000 requests/sec and 1000request/sec respectively, are
received by the SaaS provider. The incoming requests have 30% low ,30% medium,
40% high accuracy requirements.

With the increase in arrival rate, the number of requests to be processed increases,
and the data transferred and response time increases drastically. The reason for increase
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in response time is not just the time taken to transfer data between VMs but also the
queuing delay on each VM. For low and medium arrival rate the increase in response
time is not as much as when arrival rate is high. This behaviour is observed due to
the number of resources utilized by each strategy. For low and medium arrival rate
there were enough resources to process the requests and keep the response time quite
low. However, when the arrival rate increases to high, all the resources in data centers
are being utilized to process each requests which also resulted in high queuing and
data transferred delays. Nevertheless, the impact on the performance of NetAwareSaaS
strategy is almost negligible and in all cases it leads to minimum network overhead due
to data transfers and also low processing time.

6 Conclusions

In this work, we proposed a SaaS model that provides service to ordinary investors,
unfamiliar with finance models, to evaluate the price of an option that is currently be-
ing traded before taking a decision to enter into a contract. The model computed as a
first step, based on required accuracy and service time, an appropriate algorithm to be
applied. Since these are communication intensive, we considered the communication
pattern between tasks for efficient mapping to virtual machines.

Our simulation results showed that our strategy helps in reducing response time and
data transfers in the internal network, compared to an approach where SaaS does not
have access to the infrastructure and thus cannot apply the techniques described in this
paper. Our intention is to expand the current scope of a CSP to devise algorithms for
pricing such instruments as well in the near future. Portfolio optimization is another
large area of service that could utilize Cloud resources.
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