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Abstract—A multi-tenant Software as a Service (SaaS) appli-
cation is a highly configurable software that allows its owner to
serve multiple tenants, each with their own workflows, workloads
and Service Level Objectives (SLOs). Tenants are usually organi-
zations that serve several users and the application appears to be
a different one for each tenant. However, in practice, multi-tenant
SaaS applications limit the diversity of tenants by clustering them
in a few categories (e.g. premium, standard) with predefined
SLOs. Additionally, this coarse-grained clustering reduces the
advantage of these multi-tenant ecosystems over single tenant
architectures to share dynamically virtual resources between ten-
ants based on their own workload profile and elasticity adaptation
decisions. To address this limitation, we propose a multi-agent
elasticity management where each tenant is represented by a
reinforcement learning agent that performs elasticity adaptations
based on a new technical debt perspective, and make use of debt
attributes (i.e. amnesty, interest) to form autonomous coalitions
that minimise the effect of the unavoidable imperfections in
any elasticity management approach. We extended CloudSim
and Burlap to evaluate our approach. The simulation results
indicate that our debt-aware multi-agent elasticity management
preserves the diversity of tenants and reduces SLO violations
without affecting the aggregate utility of the application owner.

Index Terms—Cloud Elasticity Management; Multi-Agent;
Technical Debt; Stable Matching.

I. INTRODUCTION

A multi-tenant Software as a Service (SaaS) application is
a highly configurable software that allows each tenant (client),
usually an organization that serves a number of users, to
customize its appearance and application workflows according
to their needs; which makes it appear different for each tenant
but indeed all of them are sharing a single application [1]. The
application owner (provider) can negotiate individual SLAs
with each tenant that subscribes to the service [2]. Typical
applications that benefit from multi-tenancy are Enterprise
Resource Planning (ERP) such as SAP [3], and Customer
Relationship Management (CRM) like Salesforce [4].

In practice, multi-tenant application owners categorise their
tenants in a few types of tenancy (e.g. premium and standard

tenants) [5], which promotes the economies of scale in the
cloud [6] but limits the diversity in terms of Service Level
Objectives (SLOs). Moreover, this coarse-grain categorization
built on a threshold-based elasticity management gets an ag-
gregated resource provisioning [7] that ignores the advantages
of an autonomous tenant profiling to form dynamic tenants
coalitions and pursue an efficient resource provisioning, while
conserving the benefits of a tenant diversification from both
application owner and client perspectives.

The novel contribution of this paper is a multi-agent elas-
ticity management that promotes dynamic agent coalitions for
resource sharing in multi-tenant cloud environments. Each
agent is a debt-aware reinforcement learner that performs
resource provisioning on behalf of a tenant and dynamically
exchanges resource capacity with their peers using a stable
matching approach [8]. The agent maps the original concepts
of good and bad financial debts [9] to perform elasticity
adaptations; the former is a debt intended to create future value
for the debtor, whereas the latter is a debt unlikely to pay off in
the future. Additionally, the agent uses technical debt attributes
(i.e. amnesty and interest) [10] as preferences for the matching
algorithm that forms agents coalitions at runtime, which are
intended to make a more efficient use of virtual resources.

The technical debt [11] metaphor argues that suboptimal or
ill short-term engineering decisions that are not geared towards
long-term value creation is like going into financial debt. A
technical debt, if managed, can still speed the desired outcome,
which can consequently ease the process of paying back the
debt. This is particularly true, when the returns of taking the
debt outweigh its cost. This metaphor has been used to convey
the value and the long-term cost ramifications of the gap
between an ideal and an actual engineering decision related
to software architecture, software maintenance and evolution,
cloud service composition among others [12]. In prior works
[13], [14], we proposed a reinforcement learning elasticity
management approach that maps the technical debt metaphor



into dynamic resource provision problem. The approach values
the debt and potential utility in elasticity adaptations over time,
by examining the extent to which the actual resource supply
lags behind the ideal one. But different from previous efforts,
this work leverages the concept of debt restructuring [15] in
finance to inform elasticity adaptation in terms of a trade-
off between good and bad debts. Moreover, to the best of our
knowledge, we are the first to use technical debt attributes and
debt restructuring to promote dynamic value-driven coalitions
in adaptive environments using stable matching.

The rest of the paper is organized as follows. Section II
presents the problem statement of this work, while Section III
provides a detailed overview of our reinforcement learning
agents and explains their coalition mechanism. We report
the evaluation of our approach in Section IV, followed by
a discussion of related works in Section V. Finally, section VI
concludes our work and offers directions for future research.

II. PROBLEM STATEMENT

Elasticity is the key characteristic of cloud computing
that enables a system to autonomously acquire and release
resources on demand [16]. Ideally, the resource demand and
supply should perfectly match at any point in time. But, in
practice, any elasticity management approach (e.g. threshold-
based, reinforcement learning, queue theory) produces over-
and under-provisioning states that affect the utility of the
cloud customer [17], [18]. We posit that a multi-tenant SaaS
application should exploit its tenants’ diversity, in terms of
workload patterns and SLOs, to minimise the impact of the
unavoidable gaps between resource demand and supply in
resource provisioning.

However, multi-tenant SaaS applications limit their diver-
sity when they force their tenants to fit in one of the few
predefined categories (e.g. standard, premium) [5], [7]; which
subsequently, reduces the flexibility to define SLOs in a
cloud deployed application [2]. Furthermore, they miss the
advantage over single-tenant applications to dynamically learn
the behaviour of their multiple tenants and use this diversity
to minimize the impact of imperfect elasticity management
decisions that incur technical debt over time [13].

We propose a multi-agent approach to perform elasticity
adaptations in a multi-tenant SaaS application. Each agent
is a debt-aware reinforcement learner, acting on behalf of
a tenant, that trades off good debts against bad debts in
elasticity adaptation decisions. These agents may strategically
collaborate among each other during adaptation periods using
a debt-based negotiation to complement and rectify their
mismatch between resource supply and demand in the seek
of a local (i.e. tenant) and global (i.e. owner) utility.

III. PROPOSED APPROACH
A. Good and Bad Elasticity Debts

Technical debt is a metaphor used to rise the visibility of a
trade-off between conflicting objectives (e.g. deployment costs
and service level delivery) and to support a value-oriented
perspective when the value of an actual decision making

is compared with the valuation of the ideal one [10]. The
metaphor supports a value-oriented perspective of suboptimal
engineering decisions that may unfold a future benefit if
potential changes materialise; the metaphor can also reflect
on the decisions that initially appeared to be ideal but ceased
to create value over time, and analysed in retrospective they
ended up as suboptimal as a consequence of the context
evolution over time [11]. In general, the metaphor can be used
to convey the gap between two engineering decisions: one that
produces immediate benefits and another whose gains depends
on a more far-sighted perspective.

We view an elasticity adaptation decision as a runtime
engineering decision that carries debt. An elasticity debt [14],
[13] is determined by the valuation of the gap produced be-
tween an optimal and an actual adaptation action (e.g. launch,
stop, or maintain a virtual resource); gaps that can be seen
as over- or under-provisioning states over time. The support
of the metaphor for runtime decision-making is built on the
analogy that both debts, the financial and the technical, trade
off short-term benefits against long-term ones. Our metaphor
acknowledges that elasticity adaptations involve risks due to
the uncertainty, need to trade off exploration against exploita-
tion of well-known scenarios, and can accumulate interest over
time (the cost of the borrowed money / the extra effort required
to manage a suboptimal engineering decision).

In finance, a debt can be either good or bad [9]. A good
debt is an investment where a borrowed money is intended
to generate future value or unfold future opportunities (e.g.
a student loan, a mortgage). On the contrary, a bad debt
is an operation where a borrowed money provides no real
prospect to pay for itself in the future or quickly loses its
value (e.g. a luxury holiday loan, a credit card cash advance).
We argue that these concepts can be mapped into the elasticity
debt metaphor to perform a more accurate resource allocation,
preserve SLO diversity of tenants, and minimise the impact
of over- and under-provisioning states on multi-tenant SaaS
application utility.

We model a multi-tenant SaaS application as a multi-agent
environment, where each agent performs elasticity adaptation
actions, on behalf of a tenant, with the corresponding mis-
matches between resource supply and demand. These agents
negotiate dynamic coalitions with others over time, intended
to minimise risks of an inappropriate elasticity adaptation
decision. In this context, we devise agents that incorporate
the ability to negotiate and exchange debts among tenants
within the coalition. As Table I summarises, we view an over-
provisioning state as a good debt that embeds real options; if
these options are exercised can unlock benefits and enhance
the utility of the collaborative elastic ecosystem. These benefits
can be materialized in scenarios, where the underutilized re-
sources can serve other tenants boosting compliance for SLOs
and improve the provision for the coalition. In contrary, we
view an under-provisioning state as a bad debt that is attributed
to the ill or suboptimal allocation decision of an agent that
deemed inflexible in handling additional load leading to SLO
violations. The debt exchange operates on the assumption that



TABLE I
GOOD AND BAD DEBT IN A MULTI-AGENT CONTEXT

[ Type [
Good debt

Meaning |

An agent that is part of a coalition and enters an
over-provisioning state may create a future benefit,
from a global perspective, if shares this capacity
acquired in excess with under-provisioned agents
within the coalition.

An agent that is within a coalition and enters
an under-provisioning state will need to minimise
the consequences of its current adaptation deci-
sion by borrowing available capacity from over-
provisioned agents in the coalition and achieve a
local benefit.

Bad debt

if the agents form coalitions, the inherent and unavoidable
debts (whether good or bad) can be managed in a dynamic
and adaptive way. Additionally, the debt exchange can reduce
the negative impact of elasticity adaptations that supply an
inaccurate resource provisioning, either an excess or a lack
of resources in different agents. The exchange trades off
local benefits (tenant) against global gains (application owner).
Equation 1 calculates the elasticity debt that an agent incurs
for the duration of an adaptation action:

ElasticityDebt < —w; - GoodDebt — w; - BadDebt, (1)

where GoodDebt is determined by the costs incurred in un-
used virtual resources during the adaptation period; BadDebt
is the result of the penalties incurred as a consequence of SLO
violations; w;,w; € [0,1], w; + w; = 1, and represent the
preferences in the weighted sum. The weights can be adjusted
to reflect on the relative importance of the debts (and the extent
to which leaning towards the good or the bad). Furthermore,
learning can be employed to continuously adjust the weights
based on the debt performance prospect.

B. Learning Elasticity Debts

Reinforcement learning [19] is a framework that seeks an
optimal decision-making in the long-term; where an agent
interacts repeatedly with an environment using a predefined set
of actions and learns, from scratch, the reward each of these
actions produces based on the changes caused over the state
of the environment. In the context of elasticity management
[20], the environment is the cloud elasticity; the agent is the
elasticity management decision-maker; the set of available
adaptation actions is composed of launch, stop and maintain
a Virtual Machine (VM). Additionally, based on our previous
work [13], the reward is determined by the incurred elasticity
debt but according to the interpretation given in Equation 1;
and the variables that determine the state of the environment
are: (i) the proportion of VMs with queued requests (i.e. High,
Medium, Low), (ii) the proportion of VMs close to a next
billing cycle but without queued requests (i.e. High, Medium,
Low), and (iii) the last adaptation action taken.

Our solution implements the Q-learning algorithm, which is
a model-free reinforcement learning approach [21] that learns

an optimal decision-making by repeatedly updating the utility
of an action a given a state s according to the following update
rule:

Q(s,a) (1—0f)'Q(37a)+a'[T+W'I£§§<Q(St+1’at+1)}7 (2)

where a is known as the learning rate (a value that generally
starts at 1 and decreases with time); r represents the reward of
the action; ~ is the discount factor (a value between 0 and 1
that adjusts a learner from myopic to far-sighted respectively);
S¢+1 1s the resulting state; and a4 is the best possible action
to take thereafter.

In our case, an agent focuses on taking decisions that
minimise the elasticity debt produced by its adaptation actions;
and subsequently profile the resource provisioning for the
tenant based on penalties related to SLOs violations, incoming
workload and operating costs related to running VMs. The
debt incurred during an adaptation action taken at time ¢; is
calculated when the next adaptation is made at time ¢;, where
tj > t;.

C. Multi-Agent Coalitions based on Debt Attributes

In financial terms, the original amount of borrowed money
constitutes the principal, and the interest is an additional fee
charged for the use of the principal, that needs to be paid
back before the date of repayment [22]. Sometimes, all or
part of accrued debts are waived or forgiven; situation known
as amnesty. Both concepts, amnesty and interest are also
considered as technical debt attributes [10]. We argue that,
in cloud elasticity management, the elasticity debt amnesty
refers to the situation in which the negative consequences of
an imperfect elasticity management decision are mitigated due
to the agent participation in a coalition (e.g. sharing the excess
or reducing the lack of resources). The latter, the elasticity
debt interest, refers to the additional elasticity management
decisions that need to be taken as a consequence of the agent
involvement in the coalition (e.g. a need of previously shared
resources).

We posit that in a debt-aware multi-agent based elasticity
management, agents may form coalitions to negotiate and
exchange debts using debt attributes. The coalition may share
resources between their members to diminish their over- and
under-provisioning states.

In case of a good technical debt, we interpret two at-
tributes: (i) amnesty and (ii) interest. The former appears
when an agent, in an over-provisioning state, shares some of
its available resources with another member of the coalition
and afterwards, during the sharing, the lender finds no need
to use these shared resources; this amnesty is measured in
terms of the costs of the lent resources and considered as
positive because it offers available capacity to share. The
latter, the interest, materialises when an agent shares available
resources with the coalition but later, throughout the sharing,
these resources are needed by the agent; this situation leads
to a bad debt and its quantification would depend on whether
available resources were found or not in the coalition.



TABLE II
DEBT ATTRIBUTES MEANING IN A GOOD DEBT
[ Attribute [[ Meaning |
Amnesty An agent lends available resources to the coalition
and afterwards, within the sharing period, the agent
has no need to use those resources.
Interest An agent lends available resources to the coalition

and afterwards, within the sharing period, the agent
needs those lent resources; which leads to a bad
debt.

TABLE III
DEBT ATTRIBUTES MEANING IN A BAD DEBT

Attribute ||
Amnesty

Meaning |

An agent experiences a shortage of resources,
within the coalition period, then afterwards finds
and borrows available resources from the coalition.
An agent needs extra resources, within the coali-
tion period, but the agent fails to find available
resources to borrow and incurs SLO violations.

Interest

As far as bad technical debt is concerned, we also consider
the same attributes. The amnesty appears when an under-
provisioned agent requests resources by borrowing available
resource capacity from the coalition; this amnesty is quantified
as the costs of borrowed resources but considered as negative
because it consumes shared capacity. The interest emerges
when an under-provisioned agent fails to find the needed
capacity available in the coalition; this interest is calculated in
terms of the penalties that the agent incurs as a consequence
of the SLO violations. Table II and Table III summarise the
meaning of the chosen technical debt attributes in our elasticity
management approach.

D. Using Stable Matching for Dynamic Coalition Formation

The debt exchange principle operates on the fundamental
assumption that agents dynamically enter into new coalitions
after elasticity adaptation decisions are made; coalitions that
are expected to last at least during a cool down period [23],
which is the time where new adaptations are prohibited until
the last one takes effect. In our approach, each agent makes
the debt attributes produced in previous coalitions publicly
available to others; enabling them to use their own preferences
on debt amnesty and interest to achieve a stable matching
with other agents. In a stable matching approach [24] (2012
Nobel Prize in Economics), there are two sets X and Y, where
each agent z € X defines an ordered preference list to match
agents in set Y. Similar procedure is made by each y € Y to
match elements in X . Then, the algorithm achieves a matching
between agents of different sets based on their own preference
lists; where a matched pair (z;,y;) is stable if x; prefers to
be matched with y; over being matched with any other agent
in Y and y; also prefers matching z; over being matched
with any other agent in X. In other words, there is no pair
of matched agents that contains members with an incentive to
seek a different coalition. Additionally, the algorithm has been

Algorithm 1 Debt-Aware Agent Algorithm

Input: cooldown // a period to prevent new adaptations
Output: totalSLOwviolations // overall SLO violations
totalCosts // overall operating costs
1: Initialise arbitrarily Q) // a table of elasticity debts indexed by
state s and action a

2: goodDebt < 0 // initialises good debt

3: badDebt < 0 // initialises bad debt

4: s < monitorState Variables() // initial state for learning

5: loop

: Choose a from s using e-greedy policy derived from Q

performAdaptation(a) // launch, stop or maintain
elapsedTime < 0

9:  adaptationTime < clock()
10:  myCluster < joinACluster(goodDebt, badDebt)
11:  otherCluster + getOtherCluster(myCluster)
12:  publishMyLastDebtAttributes(otherCluster)
13:  preferenceList < preparePreferenceList(otherCluster)
14:  coalition < matchAgents(preferenceList)
15:  while elapsedT'ime < cooldown do
16: ezecuteJobs(coalition) // using own or shared resources
17: elapsedTime < clock() — adaptationTime
18:  end while
19: s’ < monitorState Variables()
20:  goodDebt < calculateGoodDebt ()
21:  badDebt + calculateBadDebt()
22:  debt < computeDebt(goodDebt, badDebt) // Equation 1
23:  Update Q(s,a) with observed s’ and debt // Equation 2
24:  totalSLOviolations+ <— getIncurredSLOviolations()
25:  totalCosts+ <+ getIncurredCosts()
26: s« s’ // update the state
27: end loop

% 2D

extended to make possible coalitions with a larger number of
matched agents [8]. In this extension, an agent defines a quota
n representing the maximum number of agents that is willing
to match.

We dynamically create the two sets X and Y by clustering
the learning agents with k-means [25], which is a simple
machine learning algorithm to group instances based on their
features. In our case, we are using the accumulated good and
bad debts as clustering features with the aim of promoting
coalitions between agents motivated by a different debt per-
spective. In particular, we intend to preserve tenants’ diversity
but incorporating the global perspective of the application
owner by forming coalitions that potentially minimise the
unused capacity in over-provisioned agents while reduce SLO
violations in under-provisioned agents.

For our approach, the cluster of agents more likely to incur
good debts corresponds to the set X. These agents prefer
to participate in coalitions with agents that experienced a
shortage of resources in previous coalitions; therefore, they
generate their ordered preference lists of agents in terms of
the higher aggregate debt interest that their potential partners
had incurred in previous coalitions. The other cluster of
agents corresponds the set Y. These agents prefer to take
part in coalitions were some resources may be available to be
borrowed; consequently, they generate lists that express their
preference to match agents ordered in terms of the higher debt
amnesty that these potential partners had achieved in previous
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Fig. 1. Arrival rates of some of the workload traces

coalitions. Algorithm 1 provides a pseudo-code with a high
level description of an agent’s behaviour.

IV. EVALUATION

We devised an experiment with 16 tenants subscribed to a
multi-tenant SaaS application, in which tenants create surveys,
publish them and gather their results [5]; each tenant has their
own workload and SLO expressed in terms of an expected
response time. The experiment aims to compare the cumulative
SLO violations and aggregate costs when the multi-tenant
application operates under three different scenarios: (i) the
common threshold-based elasticity management with tenant
categorisation, (ii) our multi-agent elasticity management but
without coalition formation, and (iii) our multi-agent elastic-

ity management with coalition formation to exchange debts.
Henceforth, for the sake of agility in the discussion, we will
also refer to them as category-based, non-collaborative, and
coalition-based approach, respectively.

A. Experiment Setup

We extended CloudSim [26], a discrete event simulation
framework for cloud environments, and its latest set of
extensions available in CloudSimEx project. Moreover, we
built on Burlap [27], a framework for implementing rein-
forcement learning solutions, and integrated this extension
with CloudSim to evaluate our approach. Regarding the k-
means algorithm, we chose the implementation available in
Weka [28], a collection of machine learning algorithms for
data mining tasks. The implementation of our evaluation is
available for validation and replication in a Git repository '.
In addition to the main functionality, our simulation tool im-
plements load balancing and a horizontal scaling that launches
a single type of virtual machine, whose processing capacity
is measured in millions of instructions per second (MIPS).
We also implemented virtual machines with a variable spin-up
time [29] that complies a Gaussian distribution to make a more
accurate representation of real cloud infrastructures. For the
category-based approach, we implemented the voting process
provided by Right Scale [30]; in which, the running virtual
machines take part in a voting process to decide elasticity
adaptations depending on a collective decision threshold about
individual performance metrics such as CPU utilization.

We generated 16 experimental workload traces, each scaled
to represent the consumption of a controllable amount of
resources during 80 hours and also available in our Git
repository. To make our experiments more realistic, some of
these experimental workloads are based on real traces from
Internet servers, such as Wikipedia traces [31], FIFA 1998
World Cup trace [32], ClarkNet trace [33], and IRCache
service traces [34]; and from other real data [35]. For the
remaining workloads, we made use of Faban [36], a SPEC [37]
accepted facility that provides a stochastic model to simulate
users in benchmarks, part of the benchmark suite for cloud
services, CloudSuite [38]. Additionally, we modelled these
workloads using Limbo [39], which is another SPEC accepted
tool that extracts and models load intensity variations over
time, to reduce noise in the workloads. Figure 1, Figure 2 and
Figure 8 show some of these workload traces.

All tenants subscribe to the multi-tenant application at the
begining of the experiment and remain subscribed during the
whole workload trace execution. The simulation assumes that
the application is deployed on CloudSigma [40], an Infrastruc-
ture as a Service (IaaS) provider, whose billing cycle looks at
resource usage every 5 minutes. Table IV indicates simulation
parameters used for the experiment. Additionally, Table V
presents further simulation parameters used to represent the
CPU utilization thresholds across different tenant categories

'If the paper is accepted in the conference, we will share the project
source code in a publicly accessible repository. Link to the repository:
https://bitbucket.org/cxm523/mankillorepo
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Fig. 2. More arrival rates of some of the workload traces

for the common threshold-based elasticity management. We
put 5 workloads in the standard category, 5 in the premium,
and 6 workloads in the super premium category of the common
threshold-based elasticity management with tenant categorisa-
tion.

We performed the experiment using a single core of a,
Linux-based, batch processing High Performance Computing
(HPC) cluster composed of nodes with cores ES5-2690 v3
Haswell sockets running at 2.6 GHz and 128 GB RAM.
The simulation ran 30 times per scenario with approximate
execution times of 1.5 minutes for the category-based elasticity
management, 2 minutes for the non-collaborative approach,
and 2.5 minutes for the coalition-based elasticity management.

Proportion of VMs close to Low (<33%) , Medium,
a next billing cycle and High (>66%)
without queued requests

w; 0.5

w; 0.5

Coalition size 2
TABLE V

SIMULATION PARAMETERS FOR MULTI-TENANT CATEGORISATION

[ Category  [[ Lower CPU Threshold [[ Upper CPU Threshold ]
Standard 55% 99%
Premium 40% 90%
Super Premium 40% 80%

B. Experiment Results

We draw box-and-whisker plots to depict the mean, median
and quartiles of SLO violations rates, billed VMs, and ag-
gregate operating costs on each approach. Besides, we draw
a line chart to illustrate a comparison of the average SLO
violations over time that each approach produces. We also
present a line chart with the average SLO violations per agent
in the coalition-based approach.

Figure 3 shows a box-and-whisker plot with the average
SLO violations incurred by the agents on each approach.
The coalition-based elasticity management achieved the lowest
number of SLO violations through the simulations with a mean
of 0.89%, whereas the non-collaborative approach doubled it
with a mean of 1.81%; their difference is a direct benefit of the
debt exchange within the coalitions. We appreciate that both
debt-aware approaches overcame the category-based elasticity
management, which reached a 8.18%.

We also analyse the varying performance of the approaches
over time to provide a more dynamic perspective. In this
sense, Figure 4 illustrates a line chart that presents the average
SLO violations over time per approach. We observe that the
curves corresponding to both debt-aware approaches follow
a descendant pattern that reduces SLO violations with time.
On the other hand, the curve of the common threshold-based
elasticity management keeps a constant SLO violations rate
over time. Although debt-aware approaches produce more
SLO violations during the initial learning period, thereafter the
resource provisioning stabilises and surpasses the category-
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based approach. These results also indicate that the use of
the debt attributes to build the coalitions shorten the learning
period of the coalition-based approach.

We disaggregate the performance of each agent in the
coalition-based approach to show individual contributions to
overall results. Figure 5 plots the average SLO violations pro-
duced by each agent in the experiment with a 95% confidence
interval (CI) for the mean. The chart illustrates that the SLO
violations achieved are homogeneous across all the agents.

Regarding the aggregate operating costs related to virtual
machines, Figure 6 depicts a box-and-whisker plot with the av-
erage billed VMs per agent on each approach. The economies
of scale enables the resource provisioning of the category-
based approach to be billed for the lowest number of VMs,
an average of 2288.81 VMs. Then, the coalition-based was
billed for 3393.04 VMs, followed by the non-collaborative
approach with a mean of 3752.27 VMs. These results are
monetised in Figure 7, which illustrates the average aggregate
costs per approach and shows that the category-based approach
spent $331.27 less than the coalition-based one. Although the
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category-based approach incurred the lowest operating costs
on VMs, these savings are negligible when compared to the
savings on avoided penalties yielded by the coalition-based
approach due to the SLO violations reduction.

C. Threats to validity

The evaluation of our approach was conducted via a sim-
ulation tool that approximates a cloud platform. But, the tool
was built on Faban, CloudSim, Burlap, and Weka; which are
the most widely extended frameworks to simulate cloud user
demand, cloud environments, reinforcement learning solutions,
and machine learning schemes, respectively. We used the
simulation tool to create a controlled environment to test
for diverse tenant behaviours and scenarios that would be
expensive to analyse in a real cloud environment.

We have taken a conservative approach in assigning the
weights for the debts to eliminate bias, assuming that all the
debts are of comparable significance. Nevertheless, in practice,
the analyst can adjust the weights to perform what-if and
sensitivity analyses.
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For simplicity, we considered only one SLO: response time.
But, our approach can be extended to support multiple SLOs
and incorporate others, such as reliability and availability.

V. RELATED WORK

In elasticity management, over- and under-provisioning
states were considered by Herbst et al. [17] as part of an
accuracy metric to benchmark elasticity management tech-
niques from different IaaS cloud providers; the accuracy was
determined by a weighted sum of over- and under-provisioning
states over time. In contrast, our work learns from over-
and under-provisioning states to guide debt-aware elasticity
adaptations at a multi-tenant application level rather than at the
underlying of elasticity management. Elasticity management
for multi-tenant environments has been previously addressed
[41], [42] but, unlike our work, they neither considered tenant
specific elasticity adaptations [7] nor used tenants’ diversity
to satisfy individual SLOs.

Kruchten et al. [11] proposed that a technical debt incurred
by an engineering decision may be valued as positive or
negative depending on its motivations. This idea was later
implemented in cloud service selection and composition by
Alzaghoul et al. [43]. Additionally, Zablah et al. [15] suggested
a mapping of the financial concepts of restructuring and
exchanging debts in the technical debt metaphor, but without
any concrete implementation. The above work looked at good
and bad debts in a static context. Our contribution goes beyond
existing work; it is the first to map the concepts of good and
bad debt into runtime and develop mechanisms for debt ex-
changes. Tom et al. [10] described an analogy between several
financial debt attributes (e.g. amnesty, principal, leverage) and
their meaning in the technical debt metaphor. To the best of
our knowledge, we are the first that measure debt attributes on
runtime engineering decisions to manage debt evolution over
time.

Notable use of stable matching includes the works of
Kimbrough et al. [24] and Maggs et al. [44]. Kimbrough et
al. applied stable matching to present a dynamic multi-agent

perspective in a simulation focused on distributed market-
based solutions; Maggs et al. used an agent-oriented stable
matching for load balancing between server clusters in content
delivery networks. But our work, up to our knowledge, is the
first that introduces strategy-driven agents that utilises the al-
gorithm to establish dynamic coalitions that address elasticity
management imperfections in multi-tenant environments.

VI. CONCLUSION AND FUTURE WORK

We proposed a debt-aware multi-agent elasticity manage-
ment for multi-tenant SaaS applications, in which agents act on
behalf of tenants that define their SLO preferences without the
need to fit in one of the quality of service categories predefined
by the application owner.

The agents learn the types of debts associated with elasticity
adaptation decisions over time and form dynamic coalitions
with others using a stable matching perspective to minimise
negative consequences of their resource provisioning. Sim-
ulation results indicate that our approach can reduce SLO
violations experienced by tenants without affecting the aggre-
gate utility of the application owner. Therefore, our approach
preserves the diversity of SLO from different tenants while
keeping the advantage of economies of scale in multi-tenancy.
Furthermore, we posit that the underlying foundations of
technical debt types and attributes applied to this multi-agent
context can be applied in other self-adaptive settings with a
trade-off between local and global perspectives.

In our ongoing research, we are extending our work to
incorporate a coalition strategy based on a cooperative game
theoretic perspective. Additionally, we are proposing to re-
structure and refinance elasticity debts for multi-tenant appli-
cations hosted in inter-cloud environments.
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