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Abstract—Fog computing overcomes the limitations of execut-
ing Internet of Things (IoT) applications in remote Cloud data-
centres by extending computation closer to data sources. Since
most of the Fog nodes are not resource-enriched, accommodation
of every IoT application within Fog environments is very chal-
lenging. Hence, we need to efficiently identify which set of appli-
cations should be deployed in such constrained environments. It
becomes even more complicated when application characteristics
in terms of urgency, size and flow of input data are considered si-
multaneously. The necessity for time-optimized execution further
intensifies the application management problem. In this work, we
propose a policy for Fog environments that distributes application
management tasks across the gateway and infrastructure level. It
classifies and places applications according to their Edge affinity.
Edge affinity of an application denotes the relative intensity of
different attributes coherent with its characteristics such as user-
defined deadline, amount of data to be processed and sensing
frequency of IoT devices, which are required to be addressed
within Fog environments to meet its Quality of Service (QoS).
The proposed policy also minimizes the service delivery time of
applications in Fog infrastructure. Its performance is compared
with existing application management policies in both iFogSim-
simulated and FogBus-based real environments. The experiment
results show that our policy outperforms others in combined QoS
enhancement, network relaxation and resource utilization.

Index Terms—Internet of Things, Application placement, Fog
computing, Quality of Service, Application classification.

I. INTRODUCTION

The Internet of Things (IoT) devices operating in physical
environments continuously generate data. Processing of IoT-
data using Cloud datacentre-based applications is subjected
to their multi-hop distance from IoT devices [1]. It increases
data propagation delay, degrades application’s service delivery
time and congests the network. To overcome these limitations,
Fog computing engages different components at the edge
network to provide infrastructure for hosting IoT applications
and process data in proximity of sources. Thus, it facilitates
applications with reduced service time and lower network
load compared to their Cloud-centric execution [2]. In Fog,
the computing components, known as Fog nodes, such as
personal computers, gateway routers and micro datacentres
are deployed in a dispersed manner. They are heterogeneous
and most of them are equipped with limited CPUs, RAM and
Bandwidth [3]. Therefore, it is difficult to accommodate every
IoT application within Fog infrastructure. Inclusion of more
nodes to resolve this issue can affect the economic aspects of

Fog computing and intensify the communication complexities
[4]. In such constrained scenario, infrastructure providers are
often instigated to offer execution of IoT applications in Fog
environments as a utility. It also urges users to provision a
certain number of applications through Fog instances such as
virtual machines and containers according to their affordabil-
ity. However, a system that deals with various applications; in
particular, for a remote health monitoring system, it becomes
complicated to determine the competent set of applications
for Fog-based placement. Assurance of their time-optimized
service delivery using Fog infrastructure also turns into a
challenging task. To address these cases, management of appli-
cations based on their Quality of Service (QoS) requirements
is regarded as one of the potential solutions [5].

Distinctive characteristics of IoT applications play important
roles in identifying their different QoS requirements. For ex-
ample, user-defined deadline indicates whether an application
is latency-sensitive or latency-tolerant. Reduced data propa-
gation delay is required for latency-sensitive applications to
ensure their QoS [6]. Similarly, based on the data sensing fre-
quency of associated IoT devices, execution of an application
can be event-driven or stream-oriented. Streaming applications
demand congestion-less data propagation so that their QoS can
improve [7]. Moreover, applications that deal with images, au-
dios, videos and large text files are required to process a huge
amount of data per input than trivial applications addressing
boolean data and short messages. They are usually known as
data-intensive applications and encapsulate multiple data pre-
processing operations such as data filtration, conversion and
consolidation along with the actual data analysis operation [8].
Therefore, it is expected to execute them closer to data sources.
Otherwise, the amount of data to be transferred through global
Internet will increase, and both the computation and commu-
nication load on remote computing resources will aggravate.
As a consequence, QoS of these application will degrade [4].
However, for a particular application, these characteristics are
independent, and their intensity can vary from one to another.
Therefore, it is not feasible to take management decision for
different IoT applications based on a single characteristics.

There exist several policies that focus on service time, re-
source and workload-aware management of IoT applications in
Fog environments [9] [10] [11]. They barely explore different
application characteristics simultaneously and investigate their



influence on application QoS requirements. In some cases,
the Fog gateway devices that reside at the user premises and
connect the IoT devices to Fog infrastructure, are assumed
to perform all required tasks for managing the applications
such as their selection and placement [12] [13]. When a large
number of gateway devices interact with a Fog infrastructure,
it is time-consuming to share the status of Fog instances
among all gateways. For a gateway, it is also difficult to cope
up with the dynamism of Fog infrastructure. Consequently,
the synchronization problem amplifies, and the overhead of
resource-constrained gateways increases.

Taking cognizance of these issues, we propose an applica-
tion management policy for Fog environments that exploits the
characteristics of applications in terms of urgency, input size
and data flow for their classification and placement. The core
innovation of the policy is to handle these multi-dimensional
characteristics and their uneven level of dominance through
the non-dominated sorting of application’s Edge affinity. Here,
Edge affinity is defined as the relative intensity of various
attributes coherent with an application’s characteristics such
as user-defined deadline, amount of data to be processed and
data sensing rate of associated IoT devices; those need to
be supported within network edge for enhanced QoS of the
application. The proposed policy also places applications on
Fog instances using an integer linear programming model and
ensures their time-optimized service delivery in Fog environ-
ments. Furthermore, it facilitates application management task
distribution by selecting the competent applications for Fog-
based placement at the gateway level and identifying the actual
application-instance mapping at the infrastructure level.

The major contributions of this paper are:
• Proposes a policy for Fog environments that manages

applications based on multiple characteristics and require-
ments across the gateway and the infrastructure level.

• Selects applications for Fog-based placement as per their
different character-driving attributes and optimizes their
service delivery time in Fog infrastructure.

• Evaluates the performance of proposed policy in a
iFogSim-simulated [14] and a FogBus-based [15] real
environment, and demonstrates the improvement in QoS
satisfaction, network relaxation, resource utilization and
data management compared to existing policies.

The rest of this paper is organized as follows: after dis-
cussing related work in Section II, the application context and
system model are presented in Section III. Section IV pro-
poses the Edge affinity-based application management policy.
Section V evaluates the performance of proposed policy in
respect to existing policies. Finally, Section VI concludes the
paper with directions for future work.

II. RELATED WORK

Different application management policies have already
been developed for Fog environments. Binh et al. [9] and
Choudhari et al. [16] propose separate policies to optimize
excution time and cost by prioritizing applications based on
user expectations and service delivery deadline respectively.

TABLE I: A Summary of related work and their comparison

Work Application characteristics Prioritized
selection

Optimizes

Data
flow

Input
size

Urgency Time Load

Binh et al. [9] X X X
Choudhari et al. [16] X X X
Nan et al. [17] X X X X
Venticinque et al. [6] X X X X
Stavrinides et al. [11] X X X X
Dang et al. [18] X X X X
Skarlat et al. [19] X X X X
Rehman et al. [21] X X X
Xu et al. [20] X X X
Taneja et al. [10] X X X X
Li et al. [22] X X X X
Guerrero et al. [23] X X X
Edge affinity (This work) X X X X X X

Nan et al. [17] conduct trade-off among service time and
request loss rate while placing the applications. Venticinque et
al. [6] model a policy that classifies applications as per their
resource and energy requirements, and maximizes QoS by
meeting deadline. Stavrinides et al. [11] prioritize applications
based on workload and ensures least completion time. The
policy of Dang et al. [18] optimizes application service time
and enhances user’s experience by organizing Fog nodes in dif-
ferent regions. Skarlat et al. [19] also highlight time-optimized
execution of applications with high resource utilization.

Furthermore, Xu et al. [20] discuss a management frame-
work that classifies applications based on deadline, and assists
service migration and load distribution. The application man-
agement policy of Rehman et al. [21] optimizes energy usage
of instances while executing the applications. Taneja et al. [10]
also develop a policy that prioritizes application placement on
robust Fog nodes to enhance resource utilization. The policy
of Li et al. [22] allocates resources according to user-driven
popularity of applications and executes them locally based on
a threshold value of computing cost. Similarly, Guerrero et al.
[23] through their policy, place the most requested applications
in Fog and improve network utilization and service latency.

A summary of related works along with the proposed policy
is given in Table I. In existing works, different characteristics
of applications are not exploited simultaneously for identifying
their various QoS requirements. User-defined deadline, amount
of data to be processed and data sensing rate of IoT devices
are also disregarded while determining placement option for
the applications. Consequently, they often fail to leverage the
capabilities of Fog computing in dealing with different sorts
of applications. In this work, we classify applications and
facilitate their placement based on the relative intensity of
different attributes those are coherent with their characteristics
and required to be supported through Fog infrastructure for
meeting their QoS. Our proposed policy also optimizes service
delivery time of applications in Fog infrastructure.

III. APPLICATION CONTEXT AND SYSTEM MODEL

A. Motivating Scenario

The application context realized in this work is similar to a
real-world scenario from Netflix. Netflix is a streaming service
where based on the category of subscription, a user can watch
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one, two or three different media contents at a time. Netflix-
users do not care about what sorts of resources are used to
enable these media contents; all that matters to them is whether
they can access the allowable number of contents on demand.
If an user ask for more media contents at the same time,
the user usually sets the preferences according to the quality
of contents on Netflix and obtain the extra contents from
other streaming services like YouTube or Stan. Such service
provisioning is economical for users and assists providers
to manage their resources efficiently [24]. We extend this
scenario from a localized perspective where Netflix resembles
the Fog infrastructure and media contents are the applications.
Users can execute a certain number of applications through
Fog infrastructure based on their requirements, affordability
and resource availability. When more applications are needed
to be executed, the allowable number of applications for Fog-
based placement are selected from them. Our proposed Edge
affinity-based management policy is capable of dealing with
such application context in Fog environments. It facilitates the
selection of applications having stringent QoS requirements
so that the capabilities of Fog infrastructure can be harnessed
extensively. Moreover, it forwards the applications with unmet
demand to other Fog or Cloud infrastructure for execution.

B. Fog Environments

Different providers can deploy cluster of Fog nodes in
various locations. Fig. 1 presents the Fog Clusters (FCs)
deployed by provider A and B on location L. In the de-
vised system model, they act as Fog infrastructure. FCs are
accessible through Fog Gateways (FGs) located at the user
premises. Each Fog node within an FC is capable of hosting
different number of Fog instances such as virtual machines
and containers as per its capacity. In an FC, the assignment
of applications on Fog instances is managed by a specialized
node named Fog Resource Manager (FRM) [25]. FRMs main-
tain a persistent communication with FGs that helps to bind
the IoT devices with FCs. FGs receive application placement
requests from end users. Placement request for an application

includes the details of its character-driving attributes such as
user-defined deadline, average amount of data per input and
sensing frequency of corresponding IoT devices. On the other
hand, FRMs extract the developer-specified minimum resource
requirements of applications along with necessary meta-data
from a catalogue service [15]. However, due to resource and
budget constraints, users are allowed to provision a fixed
number of applications on a particular FC. When this limit
exceeds, based on user’s subscription, FGs communicate with
FRM of other FCs or remote Cloud to forward the references
of additionally requested applications. The summary of notions
used in the system model is shown in Table II.

C. Definition of Edge Affinity

Fig. 2 presents the characteristics of different applications in
a three-dimensional space of user-defined deadline, amount of
data per input and sensing frequency of associated IoT devices.
In the modelled system, whenever the placement request for
any application q is received, the specifications of its character-
driving attributes are represented by the FG as a vector φq .
For example, if user-defined deadline δq = 0.250 seconds,
average amount of data per input ψq = 300 kilobytes and data
sensing frequency of IoT devices λq = 7 input per seconds for
application q, its φq =< 0.250, 300, 7 >. Numerical domain
and unit of these attributes are different. Therefore, their values
are normalized within [0,1] by FGs using Eq. 1, 2 and 3
in terms of maximum and minimum value for the respective
attribute in all application placement requests.

δq =
δq −min(δ∀q′∈Q)

max(δ∀q′∈Q)−min(δ∀q′∈Q)
(1)

ψq = 1− ψq −min(ψ∀q′∈Q)

max(ψ∀q′∈Q)−min(ψ∀q′∈Q)
(2)

TABLE II: Notations

Sign Definition
P Set of available Fog instances in an FC
Γ Set of all applications selected for placement on an FC
G Set of all FGs interacting with an FC
Qg Set of applications requested to an FG g for placement
R Set of resources such as CPUs, RAM and Bandwidth
Ωrp Availability of resource r ∈ R in instance p ∈ P
ωrq Minimum requirements of resource r ∈ R for application q ∈ Qg
φq Vector of character-driving attributes for application q ∈ Qg
ηq Edge affinity of application q ∈ Qg
δq User-defined service delivery deadline for application q ∈ Qg
ψq Average amount of data per input for application q ∈ Qg
λq Sensing rate of associated IoT devices for application q ∈ Qg
τ i Set of ith order non-dominated applications, τ i ⊂ Qg
υq Number of applications that dominate application q ∈ Qg
Υq Set of applications dominated by application q ∈ Qg , Υq ⊂ Qg
χcg Set of applications selected for placing on FC c by FG g, χcg ⊂ Qg
N Total number of non-dominated application order
ϑq Value of bottleneck character-driving attribute for application q ∈ Qg
µq Number of instructions in application q ∈ Γ
σq Output data size of application q ∈ Γ
Φp Downlink speed of instance p ∈ P
Λp Processing speed of instance p ∈ P
Ψp Uplink speed of instance p ∈ P
tιpq Input propagation time for application q ∈ Γ on instance p ∈ P
tepq Execution time of application q ∈ Γ on instance p ∈ P
topq Output propagation time for application q ∈ Γ on instance p ∈ P
ρcg Number of applications allowable for FG g to provision in FC c
xpq Equals to 1 if application q ∈ Γ is mapped to p ∈ P , 0 otherwise.
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λq = 1− λq −min(λ∀q′∈Q)

max(λ∀q′∈Q)−min(λ∀q′∈Q)
(3)

For application q, if the normalized user-defined deadline
δq , normalized average amount of data per input ψq and nor-
malized input data sensing frequency of IoT devices λq remain
closer to 0, application q is considered more latency-sensitive,
data-intensive and stream-oriented than other requested appli-
cations. Conversely, if they are closer to 1, then application q
is regarded as more latency-tolerant, trivial and event-driven
compared to others. By definition, vector ηq =< δq, ψq, λq >
refers to the Edge affinity of application q that contains
relative intensity of different character-driving attributes for q
in respect of other applications. For any two applications q and
q′, if Edge affinity are specified as ηq =< 0.10, 0.15.0.20 >
and ηq′ =< 0.75, 0.80.0.90 > respectively, then application q
should get higher priority for Fog-based placement compared
to application q′ because of its stringent QoS requirements.

However, for a single application q, its δq can be closer to 1
whereas value of other two attributes ψq and λq can be closer
to 0. Similarly, for any two applications q and q′, λq can be
greater than λq′ , although both δq and ψq can be smaller than
δq′ and ψq′ respectively. These conflicting requirements resist
efficient management of applications in Fog environments. To
ensure the enhanced QoS of applications, their management
policies are required to deal with such cases deliberately.

IV. EDGE AFFINITY-BASED APPLICATION MANAGEMENT

The proposed Edge affinity-based application management
policy functions in distributed manner across the gateway
and infrastructure level of Fog environments (Fig. 3). It is
divided into three phases. At first, FGs classify applications
according to their Edge affinity. Later, the allowable number
of applications for Fog based placement are selected. FGs
forward the references of selected applications to the FRM of
subscribed FCs. Finally, FRMs determine the time-optimized
application-instance mapping and assign them accordingly. In
the following subsections, these phases are described in detail.

A. Classification of Applications

At any FG g, the proposed policy sorts the requested
applications in non-dominated order of their Edge affinity.
Non-dominated sorting is applied to identify Pareto optimal
solutions for multi-objective optimization problems. It also or-
ganizes the solutions in different ranks based on the dominance
relationship [26]. The proposed policy adopts non-dominated
sorting to deal with the conflicting cases in Edge affinity of
different applications and classify them in numerical order
so that their prioritized selection can be made for Fog-based
placement. According to the adopted non-dominated sorting
approach, an application q dominates another application q′

when their Edge affinity ηq and ηq′ respectively meet the
following conditions.

1. ηq is not greater than ηq′ for all normalized character-
driving attributes.

2. ηq is strictly smaller than ηq′ for at least one normalized
character-driving attribute.

If an application is not dominated by any other applications,
its QoS requirements are considered more stringent than
theirs. Set of such applications are known as first-order non-
dominated applications τ1. The ApplicationClassification pro-
cedure shown in Algorithm 1 determines the non-dominated
order of different applications based on the dominance condi-
tions. It takes the set Qg of all applications requested to FG g
for placement as arguments (line 1) and consists of two parts:

1. The set of first-order non-dominated applications τ1 is
initialized (line 2). For each application q ∈ Qg , another set
Υq and a variable υq are introduced (line 3-5). Υq refers
to the applications dominated by q. On the other hand, υq
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counts the number of applications that dominate q. If all
normalized character-driving attributes such as δq , ψq and λq
of application q are not greater than the same attributes of an
application q′ ∈ Qg and one of the attributes is strictly smaller
than that of application q′, then q′ is considered dominated
by q. Hence, it is included in Υq (line 6-8). Conversely, if
application q′ dominates q, υq is incremented by 1 (line 9-10).
After checking with all q′ ∈ Qg , if υq still holds the initial
value, it signifies application q as non-dominated in respect
of the rest. Therefore, application q is added to the set of
first-order non-dominated applications τ1 (line 11-12).

2. ApplicationClassification procedure exploits the domi-
nance relationship between ith order non-dominated applica-
tions and others to determine the set of (i + 1)th order non-
dominated applications τ i+1. It starts from τ1 by setting i = 1
(line 11). However, τ i+1 is initialized only when τ i exists (line
14-15). Since each q′ ∈ Υq is dominated by application q ∈ τ i,
implicit isolation of q will surely decrease the value of υq′ by
1. For each application q ∈ τ i, this technique is applied to all
q′ ∈ Υq (line 16-18). After such operation, if υq′ becomes 0
for any q′ ∈ Υq , then it defines q′ to be dominated by only
application q. Hence, q′ is marked as the next ordered non-
dominated application to that of application q and q′ is added
to the set for τ i+1 (line 19-20). After exploring all q ∈ τ i, i is
incremented by 1 so that the set of following non-dominated
ordered applications can be traversed in similar way (line 21).

Thus, Algorithm 1 classifies applications in different non-
dominated order. For illustration, we consider five applications
with ηq1 =< 0.84, 0.60, 0.61 >, ηq2 =< 0.33, 0.7, 0.79 >,
ηq3 =< 0.68, 0.38, 0.39 >, ηq4 =< 0.14, 0.12, 0.25 > and
ηq5 =< 0.19, 0.16, 0.67 > respectively, and find the outcome
of Algorithm 1 specifying q4 as first-order, q3 and q5 as second
order, and q1 and q2 as third order non-dominated application.
However, in worst-case, it can have O(N · |Qg|2) iterations
where N is the number of non-dominated orders and |Qg| is
the number of applications.

B. Selection of Applications

After classification, FG g executes the ApplicationSelection
procedure shown in Algorithm 2 to select the allowable ρcg
number of applications for provisioning on a particular FC
c. It takes the sets of all different ordered non-dominated
applications as arguments (line 1) and contains two parts:

1. A list χcg and a variable ϕχ are initialized to refer
and count the selected applications respectively (line 2-3).
A boolean variable κ is also marked with false (line 4).
Later, the set τ i of each ith order non-dominated applications
starting from i = 1 are explored (line 5). If selection of all
applications in τ i does not surpass the number of allowable
applications ρcg , τ i is appended to χcg and ϕχ is updated
with the cardinality of τ i (line 6-8). Otherwise, it is regarded
that all applications in τ i can not be selected for placement in
FC c. Hence, κ is updated with true and exploitation of other
application sets are postponed (line 9-11). Later, based on the
state of κ, τ i is traversed further to identify which applications
from τ i are competent for selection (line 12-13).

Algorithm 1 Algorithm for classifying applications
1: procedure APPLICATIONCLASSIFICATION(Qg)
2: τ1 ← ∅
3: for q := Qg do
4: Υq ← ∅
5: υq ← 0
6: for q′ := Qg do

7: if
(
δq < δq′ & ψq ≤ ψq′ & λq ≤ λq′

)
||(

δq ≤ δq′ & ψq < ψq′ & λq ≤ λq′
)
||(

δq ≤ δq′ & ψq ≤ ψq′ & λq < λq′
)

then

8: Υq ← Υq ∪ q′

9: else if
(
δq′ < δq & ψq′ ≤ ψq & λq′ ≤ λq

)
||(

δq′ ≤ δq & ψq′ < ψq & λq′ ≤ λq
)
||(

δq′ ≤ δq & ψq′ ≤ ψq & λq′ < λq
)

then

10: υq ← υq + 1

11: if υq = 0 then
12: τ1 ← τ1 ∪ q
13: i← 1
14: while τ i 6= ∅ do
15: τ i+1 ← ∅
16: for q := τ i do
17: for q′ := Υq do
18: υq′ ← υq′ − 1
19: if υq′ = 0 then
20: τ i+1 ← τ i+1 ∪ q′

21: i← i+ 1

2. For each application q ∈ τ i, value of its bottleneck
character-driving attribute ϑq is identified (line 14). For ex-
ample, if δq = 0.10, ψq = 0.15 and λq = 0.20 for application
q, ϑq is set to 0.10. It happens because δq is the most stringent
attribute of q. Later, all application q ∈ τ i are sorted to τ̂ i in
ascending order of their ϑq (line 15). For each application
q ∈ τ̂ i, it is checked whether its inclusion for placement in
FC c surpasses the allowable number ρcg (line 16-17). If it is
negative, application q is selected and other parameters are
updated accordingly (line 18-19). Otherwise, it is regarded
that the allowable number of applications are already selected.
Hence, their further exploitation is postponed (line 20-21).

Low complexity techniques can be used to perform the

Algorithm 2 Algorithm for application selection
1: procedure APPLICATIONSELECTION({τ1, τ2, τ3, ...., τN})
2: χcg ← ∅
3: ϕχ ← 0
4: κ← false
5: for i = 1.....N do
6: if ϕχ + |τ i| ≤ ρcg then
7: ϕχ ← ϕχ + |τ i|
8: χcg ← χcg ∪ τ i
9: else

10: κ← true
11: break
12: if κ = true then
13: for q := τ i do
14: ϑq ← findMinimum(δq, ψq, λq)

15: τ̂ i ← ascendingSort(τ i, ϑ∀q∈τi )

16: for q := τ̂ i do
17: if ϕχ + 1 ≤ ρcg then
18: ϕχ ← ϕχ + 1
19: χcg ← χcg ∪ q
20: else
21: break



operations mentioned in line 14-15. Apart from them, there
will be O(N + |Qg|) iterations in Algorithm 2 during worst
case scenarios. Here, N and |Qg| denote the number of
non-dominated orders and requested applications respectively.
However, after executing Algorithm 2, FG g forwards the
references of selected applications χcg to the FRM of FC
c for placing them in Fog instances. The applications which
are not selected for placement in c are forwarded to other
FCs following the same approach or sent to Cloud. If a user
is subscribed with multiple FCs, at the FG, their order of
exploitation is set based on the preferences of that user.

C. Placement of Applications

Each FG g ∈ G interacting with an FC c forwards a
reference list of selected applications χcg to the corresponding
FRM. The FRM accumulates the received application lists in
Γ using Eq. 4. Thus, Γ refers to the set of all applications
selected for placement on FC c.

Γ =
⋃
∀g∈G

χcg (4)

In FC c, before placing an application q ∈ Γ on a Fog
instance p ∈ P , FRM calculates the input data propagation
time tιpq , execution time tepq and output data transfer time topq of
application q on that instance using Eq. 5, 6 and 7 respectively.
They explicitly depend on the downlink speed Φp, processing
speed Λp and uplink speed Ψp of instance p, and the average
input data size ψq , number of instruction µq and output data
size σq of application q. Based on these metrics, the expected
service delivery time tpq of application q on instance p is also
determined using Eq. 8.

tιpq =
ψq
Φp

(5)

tepq =
µq
Λp

(6)

topq =
σq
Ψp

(7)

tpq = tιpq + tepq + topq (8)

An FRM aims to place an application on that instance
which minimizes its service delivery time. For the set of all
selected applications Γ, this objective is formulated using a
constrained Integer Linear Program (ILP) model as shown
in Eq. 9. Solution of the ILP model is defined by a binary
decision variable xpq that becomes 1 if application q is mapped
to instance p and 0 otherwise. Constraints of the ILP model
ensure that an application will not be placed to multiple
instances (Eq. 10), its service delivery time will meet the
deadline (Eq. 11) and its host instance will have sufficient
resources to meet its minimum requirements (Eq. 12).

min
∑
q∈Γ

xpqtpq (9)

subject to,

xpq ≤ 1;∀q ∈ Γ (10)

tpq ≤ δq;∀q ∈ Γ (11)

ωrq ≤ Ωrp;∀q ∈ Γ,∀r ∈ R (12)

The optimization problem in Eq. 9 deals with fixed number
of applications and instances. They are usually set according
to the resource availability in an FC and the capacity of
corresponding FRM in addressing the optimization problem
within acceptable time limit using ILP solvers like SCIP
[27]. However, if an application misses placement due to the
constraints, another application is selected by the associated
FG using Algorithm 2.

V. PERFORMANCE EVALUATION

Performance of the proposed policy is evaluated in both
real-world and simulated Fog environments. It is also com-
pared with several existing application management policies.
Among them, the Time-aware management policy [9] opti-
mizes application service time in respect of user’s budget.
The Resource-aware management policy [10] reduces the
scope of resource over provisioning while placing applications
on Fog instances and meets their minimum requirements.
The Workload-aware management policy [11] schedules less
compute-intensive applications with high bandwidth require-
ments in Fog infrastructure as per their deadline constraints.
Details of experiment environments, performance metrics and
evaluation results are discussed in the following subsections.

A. Experiments on Real Environment

Fig. 4 presents a sample setup of the real Fog environment.
We organize the environemnt using FogBus framework [15].
FogBus helps to integrate IoT devices and Fog infrastructure
through a dedicated software system and supports the creation
of scalable Fog environments. In our real experimental setup,
eight different smart phones act as IoT devices. They are
connected with an AMD Dual-Core M320 2.10 GHz 2.00 GB
RAM configured computer which is regarded as an FG. The
FG communicates with a cluster of computers that plays the
role of FC. Within the cluster, there exists two Intel Core
i7-6700T 2.80 GHz 16.00 GB RAM and three Intel Core i7-
7700T 3.80 GHz 16.00 GB RAM configured computers acting
as Fog nodes along with an Intel Core i3-2350M 2.30 GHz
4.00 GB RAM configured computer performing the duty of
FRM. The Fog nodes are capable of hosting twelve different
Fog instances through VirtualBox [28]. The instances adapt
the bridged networking mode so that they can be accessed by
all components within the Local Area Network (LAN). Using
NetLimiter [29] software the uplink and downlink speed within
Fog infrastructure are controlled and its resource utilization is
monitored by Process Explorer [30] software.

Moreover, we profile the execution time of two applica-
tions in this environment. One of the applications analyses
histogram of an image file whereas another counts the number
of words in a text file. We define three different file sizes for
their inputs. Each smart phone launches placement requests
to the FG for placing these applications in Fog infrastructure
with inputs having any of the defined file sizes. Besides, a
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Fig. 4: An illustration of real Fog environment

placement request denotes the data sensing frequency and
expected application service delivery time of the associated
smart phone. Since application service requirements vary from
one request to another, we treat each request as the demand for
a separate application. We also enforce the FG to provision at
most ten such applications in the Fog infrastructure. Different
settings of this environment are listed in Table III.

1) Performance Metrics: The following metrics are used to
evaluate the proposed policy in this experimental setup.
• Average Amount of Data Handled (Avg. ADH): If an

application management policy utilizes the Fog infrastructure
extensively, value of this metric increases. It also denotes the
lower amount of load sent to other computing infrastructure.
• Average Management Load (Avg. ML): It denotes the

average CPU usage of FG and FRM while classifying, select-

TABLE III: Settings of real Fog environment

Total instances: 12
CPUs: 6 instances with 1 core

5 instances with 2 cores
1 instance with 4 cores

Bandwidth: 3 instances with 2 MBPS
5 instances with 3 MBPS
4 instances with 4 MBPS

RAM: 7 instances with 2 GB
3 instances with 4 GB
2 instances with 8 GB

Total requested applications: 16
Allowable applications in Fog 10
Average size of text files (MB) S1 = 0.20, S2 = 0.50, S3 = 0.80
Average size of image files (MB) I1 = 0.38, I2 = 0.74, I3 = 1.10
Amount of data per input: 2 applications with S1

4 applications with S2

2 applications with S3

3 applications with I1
3 applications with I2
2 applications with I3

Sensing frequency of phones: 2 applications with 0.25 input/sec
4 applications with 0.50 input/sec
5 applications with 1 input/sec
3 applications with 2 input/sec
2 applications with 3 input/sec

Deadline: 2 applications with 0.40 sec
3 applications with 0.70 sec
4 applications with 1 sec
4 applications with 1.20 sec
3 applications with 1.50 sec

ing and identifying application-instance placement map. The
balanced Avg. ML between FG and FRM reflects the efficacy
of a policy in distributing the application management tasks
across the gateway and infrastructure level.
• Average Delay from Request to Placement (Avg. ADRP):

Lower value of this metric points to the enhanced performance
of a policy in reducing waiting of IoT devices while accessing
Fog infrastructure services and initiating data processing.

2) Result Analysis: Along with our proposed policy, we im-
plement the basic concepts of Time, Workload and Resource-
aware application management policy in the modelled Fog
environment. The Time-aware policy applies evolutionary
algorithm to determine application-instance map. Compared
to Time-aware policy, the proposed policy performs better
in improving Avg. ADRP as it conducts low complexity
approaches to classify and select applications for Fog-based
placement and reduces the dimension of optimization prob-
lem significantly. However, the Workload and the Resource-
aware policy performs well in terms of Avg. ADRP than all
others (Fig. 5). It happens because the Workload-aware policy
adapts simplified earliest deadline first and earliest completion
time first approaches for placement map identification, and
the Resource-aware policy conducts multi-phase sorting and
searching method for the similar operation.

Moreover, as the proposed policy explicitly prioritizes ap-
plications for Fog-based placement according to their input
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Fig. 5: Avg. ADRP for different management policies
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data size, it increases Avg. ADH in Fog infrastructure (Fig.
6). By reducing the scope of resource over-provisioning, the
Resource-aware policy also improves Avg. ADH compared to
the rest. However, for enhancing application service delivery
time and deadline-prioritized placement, the Time and the
Workload-aware policy often places applications having small
amount data on powerful computing instances. As a result,
they fail to increase Avg. ADH like other policies.

In addition, to illustrate the efficacy of our policy in
distributing application management tasks, we compare its
performance with two more variations namely Infrastructure
only and Gateway only. In Infrastructure only, all manage-
ment tasks are executed by the FRM whereas in Gateway
only, the opposite happens. Nevertheless, our policy facilitates
balanced Avg. ML on both gateway and infrastructure while
conducting application management tasks (Fig. 7). Hence, it
neither increases computational burden on resource poor FGs
like Gateway only approach nor overwhelms the FRMs with
additional responsibilities as Infrastructure only approach.

B. Experiment on Simulated Environment

Besides the real setup, several experiments are also con-
ducted in iFogSim-simulated [14] Fog environment so that
we can demonstrate the large-scale comparisons between our
proposed and other application management policies easily.
Since real workload is not available for simulating different
scenarios in Fog environments, synthetic workload is used for
the experiments. It is also considered that the arrival rate of
placement requests for different applications and numerical
value of their character-driving attributes follow the Poison
distribution. Furthermore, there exists a linear relationship
between the number of instructions of an application and its
input data size. In the simulated setup, if an application is

TABLE IV: Parameters of simulated environment

Parameter Value
Instance:
Computing capacity 3-7 CPUs
Downlink bandwidth 4-20 MBPS
Uplink bandwidth 2-14 MBPS
RAM 6-10 GB
Processing speed 4000-12000 MIPS
Application:
Computation requirements 2-5 CPUs
Network requirements 6-12 MBPS
Memory requirements 2-8 GB
Number of instructions 300 - 1300 MI
Input data size 0.300-1.5 MB
Output data size 0.100-1 MB
Service deadline 0.300-1.2 seconds
Sensing frequency of IoT devices 1-8 input/second
Simulation time 200 Seconds
Number of instances 30
Sensing duration of IoT devices 1-4 Seconds
Arrival rate of placement requests 15-35 requests/second

not selected for Fog-based placement, it is forwarded to a
Cloud datacentre for execution. The simulation experiments
are conducted on an Intel Core 2 Duo CPU @ 2.33-GHz 2GB-
RAM configured computer. Different simulation parameters
used in the experiments are listed in Table IV.

1) Performance Metrics: The performance metrics used in
the simulation experiments are listed below:
• Percentage of QoS Satisfied Applications (Per. QSA): In-

creased value of this metric refers to the enhanced performance
of management policies in meeting application service delivery
deadline. If Y and Z denote the set of deadline satisfied and
the set of placed applications in both Fog and Cloud instances
respectively, Per. QSA is calculated using Eq. 13:

Per. QSA =
|Y |
|Z|
× 100% (13)

• Average Network Relaxation Time (Avg. NRT): Increased
value of this metric signifies reduced communication overhead
among the instances that consequently decreases the possi-
bility of network congestion. If ζp is the set of all placed
applications on instance p during the simulation round, Avg.
NRT is referred by Eq. 14:

Avg. NRT =
1

|P |
∑
∀p∈P

∑
∀q∈ζp

1
λq
− tιpq

|ζp|
(14)

• Average Resource Utilization Ratio (Avg. RUR) of Fog
instances: Higher value of this metric denotes improved perfor-
mance of a placement policy in increasing resource utilization
of Fog instances. If F is the set of all Fog instances (F ⊂ P ),
Avg. RUR is determined through Eq. 15:

Avg. RUR =
1

|F |
∑
∀p∈F

∑
∀q∈ζp

λq×µq
Λp

|ζp|
(15)

2) Result Analysis: In this work, the results of simulation
experiments are analysed in two phases.
• Impact of Varying Number of Placed Applications: The

Workload-aware application management policy mainly fo-
cuses on delivering application services within the deadline.
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Therefore, for increased number of placed applications, it
performs better in terms of Per. QSA than the proposed
policy. However, our policy not only considers application
deadline but also exploits their input data size and sensing
frequency of IoT devices during application placement (Fig.8).
Conversely, the Time-aware policy optimizes service time of
all applications regardless their deadline criticality and the
Resource-aware policy targets to meet the minimum resource
requirements of applications without explicitly prioritizing
them. Hence, with the increasing number of placed applica-
tions in computing environments, these policies fail to achieve
the same level of Per. QSA as the proposed policy.

Furthermore, our policy places applications having high
frequency of IoT devices and larger data size in Fog instances.
Thus, it reduces the overhead of distant communication even
when the number of placed applications in computing environ-
ments is increasing. Consequently, it helps to offer improved
Avg. NRT than others (Fig. 9). Moreover, due to exploiting
Fog instances with lower possibility of resource over provi-
sioning and facilitating the applications having high bandwidth
requirements, the Resource and the Workload-aware policy
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perform nearly as the proposed policy. On the other hand, the
Time-aware policy fails to improve Avg. NRT like others since
it barely considers the data flow characteristics of applications
while placing them in Fog infrastructure.

Moreover, the huge amount of data handled by our policy
helps to increase Avg. RUR of Fog instances as the number
of placed applications increases. It also works in favour of
the Resource-aware policy (Fig. 10). However, for executing
less compute intensive applications in Fog environments and
optimizing application service time without setting any prece-
dence, the Time and the Workload-aware policy often fail to
exploit the Fog instances comprehensively. As a result, Avg.
RUR degrades for these policies compared to others.
• Impact of Varying Number of Fog Instances: As the

number of Fog instances increases, the scope of placing
applications in proximity of data sources expands. It reduces
data propagation delay for a large portion of applications and
increases Per. QSA for all application management policies.
However, due to prioritizing applications based on their dead-
line constraints, the proposed and the Workload-aware policy
performs better in this case compared to the rest (Fig. 11).
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In addition, the increased number of Fog instances resists
the transfer of huge amount of data to other infrastructure.
Although it increases data exchange rate at the network edge,
compared to the reduction in distant communication overhead,
it is trivial. Hence, Avg. NRT increases for all policies (Fig.
12). Since our policy and the Workload-aware policy explicitly
handle the data flow and bandwidth issues of applications, they
perform better than others in improving Avg. NRT with the
increment of Fog instances. Furthermore, the proposed and the
Resource-aware policy comprehensively engage the increased
number Fog instances in executing the applications having
high data load and stringent resource requirements. Therefore,
the idle time of instances decreases and Avg. RUR enhances
for these policies than others (Fig. 13).

VI. CONCLUSIONS AND FUTURE WORK

Multidimensional constraints resist the accommodation of
every IoT applications in Fog environments. It urges to
determine the competent set of applications for Fog-based
placement. In this work, we proposed an application man-
agement policy that explores application characteristics in
terms of urgency, input size and data flow, and identifies their
necessity for Fog-based placement in form of Edge affinity.
Edge affinity of an application depends on its service delivery
deadline, amount of data to be processed per input and sensing
frequency of IoT devices. The proposed policy classifies
applications through non-dominated sorting of their Edge
affinity and selects a set of applications with stringent QoS
requirements for placement in Fog instances. An ILP model
also ensures their minimized service time in Fog environments.
Performance evaluation conducted in both real and simulated
setup illustrate that the proposed policy outperforms others in
enhancing QoS, network relaxation and resource utilization.

In future, we plan to apply application characteristics and
their driver attributes in enhancing providers profit and user
experiences in Fog computing environments.
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