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Abstract The Internet of Things (IoT) paradigm is drastically changing our world 
by making everyday objects an integral part of the Internet. This transformation 
is increasingly being adopted in the healthcare sector, where Smart Hospitals are 
now relying on IoT technologies to track staff, patients, devices, and equipment, 
both within a hospital and beyond. This paradigm opens the door to new innova-
tions for creating novel types of interactions among objects, services, and people 
in smarter ways to enhance the quality of patient services and the efficient utilisa-
tion of resources. However, the realisation of real-time IoT applications in health 
care and, ultimately, the development of Smart Hospitals are constrained by their 
current Cloud-based computing environment. Edge computing emerged as a new 
computing model that harnesses Edge-based resources alongside Clouds for real-
time IoT applications. It helps to capitalise on the potential economic impact of 
the IoT paradigm of $11 trillion per year, with a trillion IoT devices deployed by 
2025 to sense, manage, and monitor the hospital systems in real time. This vision 
paper proposes new algorithms and software systems to tackle important challenges 
in Edge computing-enabled Smart Hospitals, including how to manage and execute 
diverse real-time IoT applications and how to meet their diverse and strict Quality 
of Service (QoS) requirements in hospital settings. The vision we outline can help 
tackle timely challenges that hospitals increasingly face.

R. Buyya (B) · M. Goudarzi · L. Ismail · V. Kostakos 
Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and 
Information Systems, The University of Melbourne, Melbourne, Australia 
e-mail: rbuyya@unimelb.edu.au 

S. N. Srirama 
School of Computer and Information Sciences, The University of Hyderabad, Hyderabad, India 

R. Mahmud 
School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, 
Perth, Australia 

L. Ismail 
Intelligent Distributed Computing and Systems (INDUCE) Lab, Department of Computer Science 
and Software Engineering, National Water and Energy Center, United Arab Emirates University, 
Abu Dhabi, United Arab Emirates 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
S. N. Singh et al. (eds.), Proceedings of the NIELIT’s International Conference 
on Communication, Electronics and Digital Technology, Lecture Notes in Networks 
and Systems 676, https://doi.org/10.1007/978-981-99-1699-3_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1699-3_1&domain=pdf
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-981-99-1699-3_1


2 R. Buyya et al.

Keywords Edge computing · Quality of Services · Internet of Things · Smart 
Hospitals 

1 Introduction 

Internet of Things (IoT) devices are hugely impacting our lives [1]. It is projected 
that the IoT paradigm will have a tremendous economic impact of $11 trillion per 
year, with a trillion IoT devices deployed by 2025 to monitor and manage smart 
systems in real time [2] in different domains, including smart healthcare. The Internet 
of Medical Things (IoMT) devices, deployed for supporting applications within a 
Smart Hospital, are geographically distributed across floors, buildings, and sites and 
increasingly reaching into patients’ own homes, especially in pandemic scenarios 
such as COVID-19. Collectively, they can generate a tremendous amount of data in 
a short time. Conceptually, data in such IoT environments can be classified into Big 
Stream transient data (such as real-time localisation) constantly captured from IoT 
devices and sensors, and Big Data persistent data and knowledge (such as medical 
records) stored and archived in a centralised Cloud storage. Thus, applications require 
both Big Stream and Big Data processing capabilities for decision-making in real 
time. Their unique requirements in the context of Smart Hospitals are summarised 
as follows: (a) ephemeral performance-based data (such as surgery completion times 
and environmental sensing) need real-time analysis to provide new approaches for 
governance and policy-making in hospitals; (b) surveillance and monitoring of the 
patient condition, both within a hospital and at a patient’s home, pose strict real-time 
low-latency requirements with strict deadlines to enable rapid and timely response; 
and (c) strict privacy requirements pose additional constraints on how and where 
can information be transported, processed, and stored, and also require a precise 
specification of these constraints. 

These requirements impose a massive burden on the computational infrastructure 
that needs to cope with massive storage and processing power requirements. Although 
Cloud-based approaches are designed to deal with large volumes of data, they are 
unable to support real-time data analysis and actions [3]. With millions of nodes 
sensing and generating data, the current Cloud-centric IoT model of sending the data 
to a remote Cloud for processing is neither scalable nor meets QoS requirements 
of IoT-based Smart Hospital applications such as low end-to-end latency and high 
throughput for responding to requests or situations such as emergencies in real time. 
In addition, it leads to network congestion, and the Internet needs to deal with this 
excess data outstripping the capacity, causing additional communication costs in 
accessing services. 

The dynamic nature of IoT environments such as Smart Hospitals, the real-time 
requirements of their applications, and the increased processing capacity of Edge 
devices have led to the emergence of the Edge computing paradigm (see Fig. 1).
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Edge computing harnesses network-wide resources and offers lightweight Cloud-
like services at the Edge of the network to support latency-sensitive IoT applica-
tions in real time. It can integrate Cloud capabilities for scalable storage, as well as 
processing services on-demand, to support latency-tolerant IoT systems and appli-
cations. IoT devices are connected to Edge Gateway Nodes (EGNs), such as insulin 
pumps, patient tags, smartphones, tablet computers, Raspberry Pi devices, and nano-
servers, which are part of the end-users. For each IoT application, EGNs offer inter-
faces for authentication, sensing frequency calibration and data aggregation. EGNs 
forward the sensed data to Edge Computational Nodes (ECNs), such as CISCO 
IOx-supported networking devices and micro-data centres, offered by Edge Service 
Providers (ESPs), for further processing operations such as data filtration and data 
analysis. However, there are many challenges involved in developing and deploying 
IoT applications for Smart Hospitals. Some of these challenges are 

• Quality of Services (QoS). Unlike Clouds, Edge computing nodes are resource 
constrained, distributed, and heterogeneous, and they are interconnected through 
dynamic networks [4]. Furthermore, Edge computing needs to support user 
mobility, interface diversity and distributed data analysis tasks to address the QoS 
requirements of Smart Hospitals IoT applications such as low-latency service 
delivery.

• Communications and Energy Efficiency. Edge computing needs to minimise 
network traffic and power consumption while meeting the demands of IoT appli-
cations. Across various wards and departments of a Smart Hospital, features of 
IoT applications and workloads can vary significantly. IoT workloads can be 
either event-driven or stream-based and can encapsulate multimedia or scalar
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Fig. 1 Edge computing-driven environment for IoT applications in Smart Hospitals
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data. Applications can follow different kinds of execution models such as streams, 
workflows, bag of tasks, and graphs to process the IoT workloads. Run-time 
requirements of these applications can also change according to the nature of 
processing operations (e.g. compute or data-intensive). These requirements, along 
with the need for harnessing processing capabilities in network switches and 
routers to meet QoS requirements of IoT applications, make the management of 
resources in Edge computing-enabled Smart Hospitals a challenging task.

• Security and Privacy. Several features related to security need to be fulfilled, 
such as privacy, in which patients’ sensitive data are not revealed to other users of 
the network, and integrity so that data is not tampered with during processing or 
transmission over the network. In addition, Denial of Service Attack (DoS) should 
be considered, as attackers’ requests which look legitimate cause a decrease in 
IoT applications performance that could be life-threatening and an increase in 
energy consumption. 

To address these challenges and realise the full potential of the Edge computing 
paradigm for IoT applications, our community must overcome several critical chal-
lenges. The first and foremost is the formulation of decision-making approaches 
(particularly for resource management and application scheduling) that dynamically 
determine which subset of data analysis tasks are to be performed on Edge resources 
and which ones on Cloud data centres to meet the QoS requirements of different 
IoT applications. Other issues are concerned with how to support multiple tenants 
with performance isolation between them, to meet the requirements of integrated 
IoT applications such as Smart Hospitals. 

2 Relevant Work 

Several frameworks for harnessing Edge and Cloud resources to execute IoT appli-
cations have been proposed for many application scenarios, such as smart health care 
[5], smart city [6], smart agriculture [7], and smart grid [8]. They are platform-specific 
and lack support for the simultaneous execution of multiple applications and offer 
limited scope for tuning the system according to the specific requirements of appli-
cations. To reduce the management overhead, existing frameworks apply centralised 
techniques that eventually degrade the QoS. In addition, several works discuss 
different resource provisioning [9–11] and application placement policies [12–15] 
for Edge computing environments. They provide resources for both latency-sensitive 
and tolerant applications in similar ways that eventually degrade their performance 
and are difficult to tune according to the dynamics of real-time IoT applications. 
Furthermore, contemporary application placement policies for Edge environments 
are not capable enough to simultaneously deal with the diverse characteristics of 
different applications meeting their deadline, QoS requirements, user preferences, 
and service provider’s interest. While executing applications in a distributed manner, 
the efficiency of these application placement policies gets affected by node-to-node
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communication delay, high data sensing frequency of the applications and uneven 
workloads. 

Overall, the existing works lack the seamless management of Edge infrastructures 
while provisioning resources, placing applications, and scheduling IoT workloads 
to meet the QoS requirements of IoT applications. Many consider Edge and Fog 
computing paradigms to offer similar capabilities [16] and use them interchangeably. 
Although consortiums such as OpenFog provide guidelines on the development of 
such frameworks, they do not offer any algorithms or systems that can simultane-
ously handle resource provisioning, application placement, and workload scheduling 
in Edge environments. These shortcomings should be addressed by developing new 
algorithms and systems for handling multiple issues related to QoS, resource provi-
sioning, scheduling, heterogeneity, mobility, faults, and failure management in Edge 
computing-enabled Smart Hospitals in an integrated manner. 

3 Significance and Innovation of Our Vision 

We propose software systems and QoS-based algorithms for provisioning and 
scheduling real-time IoT applications in Edge computing-enabled Smart Hospitals. 
We believe this idea is innovative, and original, and highlights significant problems 
that need to be overcome:

• Timeliness: The Internet of Things paradigm is rapidly enabling the creation 
of smart environments and applications in domains such as health care, traffic 
management, surveillance, and disaster management. However, current Smart 
Hospital approaches for hosting these applications follow a pure Cloud-centric 
model (using data centre resources located at the endpoint of the network); as 
a result, they are unable to meet the requirements of real-time decisions due to 
network latency and congestion issues. These limitations can be overcome by 
the emerging Edge computing paradigm, which aims at harnessing Edge network 
resources and others as appropriate. Our vision is timely as it aims to develop 
solutions for the dynamic creation of Edge computing environments and manage-
ment of Smart Hospital resources and services to meet the QoS requirements of 
IoT applications. We also must develop mechanisms and policies for a reliable 
Edge computing environment by ensuring its resilience under failures, perfor-
mance degradation, and tolerating faults. To achieve this, the management of 
IoT applications cannot just harness Edge resources but also Cloud resources for 
integrated decision-making in contexts such as smart health care, where multiple 
critical infrastructures of IoT applications—such as operating theatre and patient 
monitoring systems—need to be utilised seamlessly. The central theme of our 
vision is to develop Edge computing technologies for IoT-based health care/Smart 
Hospital applications in networked and mobile environments. Therefore, we must 
address issues of relevance to one of the practical research challenges of using 
technologies effectively as enablers for individuals to manage their healthcare,
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for instance, using mobile applications, remote monitoring and online access to 
treatments. While dealing with sensitive hospital data, we should harness the 
computing capabilities within the Edge network to reduce the scope of data expo-
sure to external networks. This will ensure data privacy and add a new dimension 
to the Cybersecurity area.

• Originality and Innovation: Although Edge computing is rapidly growing, soft-
ware practitioners are facing numerous challenges while creating smart IoT appli-
cations that deal with data sources from millions of sensing devices. Currently, 
little emphasis is paid to the adaptive management of IoT data sources and deploy-
ment of IoT applications to harness Edge network and Cloud resources seam-
lessly and reliably and at the same time, meet their QoS requirements. These 
issues can be addressed by developing new algorithms for integrated manage-
ment of IoT devices, network Edge and endpoint resources, and fault-tolerant 
techniques; hence, its goals are novel and original. In addition, the heterogeneity 
and topology-aware placement of Smart Hospital application modules can make 
novel contributions. These advances will enhance the ability of Edge computing 
to support a wide range of IoT applications.

• Advancement of the Discipline: The proposed vision will lead to (1) funda-
mental principles for the creation of Edge computing environments for QoS-
driven IoT applications in the context of Smart Hospitals, (2) novel algorithms 
for harnessing Edge network resources to support latency-sensitive IoT applica-
tions, (3) approaches for seamless use of Edge and Cloud resources for latency-
tolerant tasks of integrated IoT applications, and (4) innovative mechanisms and 
policies for dealing with failures and faults to enhance the resilience of the system 
along with software technologies. These outcomes will not only advance the Edge 
computing paradigm but also have an immense impact on distributed systems 
discipline and its application domains.

• Significant Business Opportunity: According to McKinsey’s market analysis 
report “Unlocking the Potential of the Internet of Things”, real-time IoT applica-
tions will have an economic impact of $11 trillion per year by 2025—equivalent 
to about 11% of the world economy [2]. A “Health Expenditure Australia 2017– 
18” report [17] notes that health spending accounted for 10% of overall economic 
activity. The USA spends 17% of its GDP on health care each year [18]. There-
fore, the realisation of our proposed vision will present a significant business 
opportunity for companies in the Edge computing and industrial/healthcare IoT 
applications marketplace. 

4 Architectural Framework 

As stated earlier, this vision paper proposes the creation of QoS-based algorithms for 
provisioning and scheduling real-time IoT applications in Edge computing-enabled 
Smart Hospitals. The approach for the realisation of the proposed vision consists of 
the following steps:
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• Architectural framework and principles for Edge computing supporting real-time 
IoT applications.

• Algorithms for QoS-based provisioning of resources from Edge till the endpoint 
infrastructure, and techniques for management of performance and failures in 
virtualised and containerised infrastructures.

• Algorithms for QoS and topology-aware placement and scheduling of IoT applica-
tions in Edge computing environments with heterogeneous network and compute 
resources.

• Mechanisms and policies to increase the resilience of the system.
• Prototype software system and demonstrator IoT-based Smart Hospital applica-

tions deployed in Edge computing environments. 

4.1 High-Level System Architectural Framework 

The entire solution architecture for managing real-time IoT applications by 
harnessing both Edge network and Cloud resources is shown in Fig. 2. The archi-
tecture leverages cutting-edge technologies and paradigms to deliver a reliable and 
scalable Edge computing environment meeting the QoS requirements of IoT appli-
cations. We present components of the framework organised at two levels and their 
related research problems.

1. Gateway Level: This level contains all the components for managing Edge 
resources while deploying the applications, scheduling the IoT workloads, and 
dealing with the varying application contexts and failures to meet the QoS 
requirements of applications. 

2. Infrastructure Level: This level features computational resources comprising 
Edge Computational Nodes (ECNs) and Cloud data centres that execute the 
applications and process the IoT workloads. 

4.2 Gateway Level 

IoT Application Broker (IAB) is the core component of the architecture and consists 
of a set of subcomponents with specialised algorithms. As a mediator between the 
various medical devices, equipment, or users, and Edge computing network, it is 
responsible for resource provisioning, scheduling, and management of the execution 
of IoT applications while meeting their QoS requirements. Data Manager handles 
interactions between the gateway node and IoT devices. QoS-based Resource Provi-
sioner allocates resources for executing IoT applications based on functional require-
ments to meet the QoS. Application Placement Engine deploys modules of large-
scale IoT applications over Edge and Cloud resources. Monitoring and Resilience 
Manager applies policies and techniques to achieve the resilience of the system and 
deal with failures and performance issues. IoT Workload Scheduler schedules IoT
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Fig. 2 Architectural framework for managing IoT applications

workloads for processing in the selected infrastructure. Directory and Catalogue 
Services act as a registry for maintaining instance images and meta-data regarding 
applications and data flows, and IAB uses its services for resource discovery. The 
research elements, such as algorithms and mechanisms needed for the realisation of 
these components, are discussed in the next section. 

4.3 Infrastructure Level 

Edge and Cloud Infrastructures will have their own resource managers named Edge 
Resource Manager (ERM) and Cloud Resource Manager (CRM), respectively. They 
are responsible for monitoring the context of the respective infrastructure, predicting
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performance, resource virtualisation (virtual machines and containers), pooling, 
scaling, coordination, and dynamic optimisation (migration and consolidation). In 
addition, they offer service backup, reliability, and fault tolerance during uncertain 
events such as node failures, resource outages, and security attacks. Advances in algo-
rithms and techniques needed for the realisation of ERM are discussed in Sect. 5.8, 
and existing technologies such as OpenStack will serve as CRM. 

5 Research Issues and Envisioned Approaches 

5.1 Data Management Techniques 

The basic operations of a Data Manager (DM) include IoT device discovery, sensing 
frequency calibration, device authentication, data pre-processing, and data aggre-
gation from multiple data sources. In Smart Hospitals, the deployment sites and 
functionalities of IoT devices can be diverse. For example, the pulse oximeter and 
Electrocardiography system located in the hospital cabins tracks the health status of 
patients, whereas the surveillance cameras located in the hospital corridors monitor 
the hospital staff and patient visitors. In the Smart Hospitals context, the greater the 
amount of sensed data, the higher the accuracy level. During data sensing frequency 
calibration of IoT devices, both device energy constraints and the required accuracy 
level should be considered, especially when they are powered by batteries recharged 
by things like solar panels. Moreover, Smart Hospital workloads are diverse in nature, 
and tolerable delays for application service delivery can change dynamically and 
intermittently. In these cases, diverse data streams need to be handled differently to 
meet the application QoS. Existing data management approaches in Edge computing 
understate these issues [6]. To address the current limitations, policies should be 
prepared for making a trade-off between sensing frequency and QoS requirements of 
the applications so that IoT devices are used in a sustainable/energy-efficient manner. 
Based on the data flow characteristics, DM categorises the workloads using historical 
data analysis. If such categorisation is not effective, DM applies lightweight cate-
gorisation approaches such as workload profiling. DM also deals with patient-centric 
parameters efficiently so that their dynamics or contextual information (e.g. location, 
mobility, and criticality) can be effectively utilised during resource provisioning, 
application placement, and workload scheduling. 

5.2 Algorithms for QoS-Based Resource Provisioning 

The QoS-based Resource Provisioner allocates resources in Edge computing environ-
ments for executing IoT-based Smart Hospital applications ensuring their guaranteed 
performance. The QoS requirements of the applications in Smart Hospitals vary from
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one to another. For example, the tolerable service delivery delay for an application 
analysing the health parameters of a patient in an emergency unit is more stringent 
than the application monitoring the health status of outdoor patients. Similarly, the 
QoS of applications can depend on different types of attributes. For example, when 
a patient is in motion from the emergency unit to the operation theatre, the real time 
and mobility support of the health status analysing application becomes predomi-
nant, whereas during operation, only real-time service delivery drives the QoS of the 
applications. 

Provisioning of resources for applications driven by QoS requirements is a chal-
lenging task as there is a waiting time between the moment resources are requested 
from Edge providers and the time they become available for application execution. 
This waiting time varies with providers, the number of requested resources, and 
the load in the computing environment. Existing resource provisioning techniques 
[9, 10, 19] did not consider these issues. To overcome this limitation, we forecast 
the resource requirements and the context variations of QoS-driving attributes of 
the applications and provide the resources for them in advance. IAB achieves this 
through negotiation with Edge service providers supporting protocols such as alter-
nate offers [20]. However, depending on various models of the applications, this 
approach may not be cost-efficient. Alternatively, the provisioner may decide to 
allocate more powerful resources so that the execution time of the applications gets 
reduced to meet QoS requirements. Therefore, QoS-based resource provisioning 
algorithms will dynamically determine the best one from these alternatives. Different 
providers have different offers in terms of the combination of CPU power, number of 
cores, memory, and storage capacity of their machine instances. While provisioning, 
the algorithms should dynamically decide the appropriate combination of resources 
that meet the QoS requirements of IoT applications. 

Furthermore, service providers set different prices for different combinations 
of resources. To meet user budget constraints, the resource provisioning algorithm 
should take the combination of resources into account that meets the application QoS 
requirements at the minimum cost and consumption of energy. Due to the complexity 
of the problem, multi-criteria optimisation and meta-heuristic algorithms for solving 
the problem should be created. 

5.3 Application Placement Algorithms 

Edge computing is constrained in spatial sharing compared to Cloud. For example, 
private Edge infrastructure is primarily meant for its own use. In such an environ-
ment, users’ privacy can be better maintained compared to public Clouds, which are 
vulnerable to security threats/privacy breaches because of the widespread sharing. 
Since the processing of personal data, such as electronic health data, are subjected to 
privacy issues, it is expected to perform such operations locally to reduce the scope 
of privacy breaching. The application placement (AP) engine grasps the privacy pref-
erences of the users and places the applications accordingly over local Edge remote
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Cloud infrastructure. Moreover, the services of an application can be relevant to many 
external entities. For example, the health status of a patient can be crucial to insurance 
companies, employers, specialists, and pharmacists. The AP engine ensures ease of 
access to these application services by placing them in suitable Edge computing 
nodes. Additionally, Edge computing supports distributed deployment of large-scale 
applications (such as remote monitoring of the patients within the Smart Hospitals) 
in a modular way. 

Latency sensitivity of different application modules while exchanging data 
elements through an uncertain network can degrade the service quality. The inter-
communication delay among different instances and dependencies between two 
application modules can play a critical role in this case. Additionally, the sensing 
frequency of IoT devices can change (e.g. for energy-efficiency of sensors) with time 
and trigger the execution of other applications that can affect the existing resource 
management plan significantly. Moreover, the deployed IoT applications may have 
different priorities, incurring different costs, especially in the healthcare domain. 
Since all these parameters are tightly coupled, the exploitation of a single parameter 
while making the application placement decision is not adequate to meet the QoS. 
This constraint also limits the adaptability of application placement techniques to 
specific application and network scenarios which is barely dealt with by the existing 
placement approaches [14, 21]. Our proposed application management algorithms 
will address these issues by simultaneously considering correlated QoS parameters 
from the perspective of diverse IoT/Smart Healthcare application scenarios. For the 
realisation of this operation, the placement engine will profile the circumstantial 
significance of different QoS metrics and apply it to dynamically tune the weight of 
these QoS parameters for varying application service requirements, environmental 
context, and user demand while dealing with the latency-sensitive applications in 
Edge computing environments. 

5.4 IoT Workload Scheduling 

When QoS-based provisioning algorithms create a pool of computing instances 
across multiple Edge infrastructures, application modules get placed in a distributed 
manner. Once application execution starts over the computing instances, IoT work-
load will be scheduled on them. As the Edge environment consists of dynamic and 
heterogeneous resources, our adaptive scheduling algorithms consider them while 
mapping tasks/workloads to improve the efficiency of the system. The scheduler 
also considers data exchange time and network topology while scheduling the work-
loads. While scheduling workload to multiple applications, IoT Application Broker 
(IAB) considers their priorities and QoS requirements and makes a rational deci-
sion. For example, requests from IoT applications in emergency conditions (such as 
patients’ respiratory problems) will have higher priority than normal use cases (such 
as sneezing). We schedule workloads across multiple Edge computing instances in a
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prioritised manner without affecting the service quality requirements of other appli-
cations. Our system promotes auto-scaling of the resources while dealing with uneven 
workloads. In this case, resource provisioning and workload scheduling operations 
are performed in an integrated manner. As scheduling heterogeneous and uneven 
workloads can be an NP-complete problem, feasible solutions should be developed 
to the problem without having any negative impact on users’ QoS constraints. 

5.5 Mobility Management 

The mobility patterns of users perceived using embedded GPS of IoT devices or 
access points’ beacons can be a priori-known or a priori-unknown. While managing 
the mobility of users with a priori-known pattern, the placement engine uses the loca-
tion trajectories of subscribed patient devices to select the best Edge server for the 
placement and migration of application modules. However, for the priori-unknown 
mobility scenarios, the placement engine places the applications’ modules on the best 
available server applying predictive analytics on the latest location information of the 
devices. The mobility manager augments the mobility data to the trajectory history 
of the users, to identify any possible correlation between the uneven mobility of 
users and variations within the patient’s context. This feature will assist the mobility 
manager in handling the uneven mobility of the users by exploiting both priori-known 
and priori-unknown techniques. For each user, it tracks the QoS parameters associ-
ated with its application, the available mobility information (such as the history of 
trajectories and average speed), and the current configuration of application modules 
assigned to Edge servers through communication with Data Manager, QoS-based 
Resource Provisioner and application placement engine, respectively. Hence, if crit-
ical degradation of QoS parameters occurs, it triggers the application placement 
engine to find new configurations for application modules using available contextual 
information of the user and its application and Edge devices with sufficient resources. 

5.6 Monitoring and Resilience Management 

To ensure the guaranteed performance of the applications, real-time monitoring of 
their run-time states is required. A failure of a single application module may compro-
mise the execution of the whole application due to the dependencies. Therefore, we 
need mechanisms for increasing system resilience, such as module replication and 
pre-emption. The degree of our module replication depends on constraints noted 
in QoS parameters such as the budget limit. Such replication of execution will be 
used to deal with the critical part of the application (e.g. a critical node in a work-
flow application having a severe impact on overall QoS if a node fails). To support 
critical applications (e.g. health status monitor during surgery), our system supports
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pre-emption to prioritise their execution. This is achieved by suspending those appli-
cations having minimal impact on their QoS constraints. These techniques, combined 
with scheduling across multiple Edge infrastructures, make the system resilient in 
addition to meeting QoS requirements. 

Proactive monitoring of resources is critical for ensuring the resilience of the 
system. Considering the distributed resources in the Edge environment, the likeli-
hood of faults in individual components of the system is high. Moreover, resources 
are shared among different customers, and this may result in underperformance 
due to resource contention. Finally, Edge–Cloud resources may not be immediately 
available, delaying the start of the application. This may render the original plan 
of replication and pre-emption ineffective to meet QoS expectations, and hence, 
a second line of defence against QoS violations is necessary. Our techniques will 
monitor and proactively respond to failures and underperformance while ensuring 
that failures in one or more resources do not compromise the QoS requirements of 
IoT applications. 

5.7 Directory and Catalogue Services 

Directory and Catalogue services, realisable using Web services technologies such 
as Universal Description, Discovery, and Integration (UDDI), support publication 
and discovery of data sources, application services and associated instance images 
offered by Edge service providers (ESPs). They aid IAB in the discovery of suitable 
data and application services and their sources during resource provisioning and 
application scheduling. ESPs allow the creation and storage of computing instance 
images containing all the software and configurations necessary for the applica-
tions. Edge service providers, IAB, and/or users themselves register new images on 
this catalogue, along with information about software and configurations. Similarly, 
applications may require access to data that is stored in a repository in a specific loca-
tion or replicated among a few locations. IAB uses these details maintained in the 
Data Catalogue to reduce the amount of data movement between the data repository 
and the applications. 

5.8 Edge Resource Management Policies 

Edge Resource Manager (ERM) is responsible for the management of Edge nodes 
that are distributed and loosely connected through different networks with varying 
bandwidth and latency capabilities. Edge nodes can be autonomous or part of a 
cluster. In the case of dynamic Edge cluster formation, a node hosting ERM moni-
tors contexts such as processing load and energy usage of each node and coordinates 
their underlying virtualised resources. While provisioning resources and scheduling 
IoT workload, IAB communicates with the ERM of Edge clusters set up by different



14 R. Buyya et al.

Edge Service Providers (ESP). Based on the contextual information, ERM allo-
cates resources for IAB and manages the execution of IoT tasks meeting their QoS 
requirements. 

Since Edge infrastructure is composed of a finite amount of Edge resources, exces-
sive resource provisioning requests from IABs can easily surpass the infrastructure 
capacity. Therefore, application execution experiences delays, and this results in 
poor QoS and SLA violations. Existing policies [5, 6] for the management of Edge 
resources lack a lightweight performance prediction model, platform-independent 
interactions, and admission control mechanisms. ERM will profile the performance 
of resources while executing different applications and uses platform-independent 
RESTful APIs for communication. ERM will evaluate the feasibility of applications 
for execution in Edge based on resource availability and QoS requirements. If a 
micro-service running on an Edge node requires additional resources and its Edge 
environment is unable to support it, ERM will delegate latency-sensitive operations 
to other Edge clusters and latency-tolerant operations to Clouds in collaboration with 
IAB. 

6 A Case Study 

Our vision leads to the development of algorithms and software systems that support 
the deployment of IoT applications in Edge computing environments. To demonstrate 
the feasibility of our vision, we create a prototype system along with an application 
in a Smart Hospital scenario, by leveraging existing IoT middleware and associated 
technologies. Of course, proposed ideas can be first evaluated for various scenarios 
through modelling and simulation using our iFogSim simulator [4] and then incor-
porate proven techniques in software systems, including our IoT Application Broker 
(IAB) and Edge Resource Manager (ERM). To reduce the cost of software engi-
neering of IAB and ERM, we will leverage existing IoT middleware and associated 
technologies. They include (a) ZigBee and Constrained Application Protocol (CoAP) 
for communication between IoT sensors and Gateway, and Web services-based inter-
faces for interaction between components in Gateway and Infrastructure levels, (b) 
OpenHAB, Apache Edgent, and others such as FogBus [22], (c) Docker containers 
for creating micro-services and its orchestration engine for management of Edge 
nodes, and (d) Cloud resource management technologies such as OpenStack. 

6.1 A Smart Healthcare Application and Edge Computing 
Environment 

We will now discuss a case study of creating a sample Edge computing environment 
using the FogBus2 framework [23], and an application demonstrator in the context
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of diabetes monitoring and prediction. FogBus is a framework for scheduling and 
processing heterogeneous IoT applications in a distributed manner. The network 
topology in FogBus is based on a master–worker model in which the master controls 
the created task executor nodes (i.e. workers). It connects different IoT devices and 
sensors with Edge and Cloud infrastructure via a gateway device, to process data 
and tasks on worker nodes in the Edge and Cloud environment. Figure 3 represents 
our case study for diabetes monitoring and prediction using FogBus. In this IoT 
application, IoT devices for health monitoring, known as the Internet of Medical 
Things (IoMT), are used to sense diabetes risk factors, such as blood pressure, and 
send the data over the internet to an Edge computing node for pre-processing and 
predicting the prevalence of diabetes for a user. Streamed data is sent by the Edge 
computing node to the Cloud node for storage. The prediction model on the Edge 
computing node is the result of machine learning training in the Cloud. Training 
the diabetes dataset in the Cloud is achieved offline so that the development of 
the prediction model does not impact the prediction performance on the Edge. The 
prediction model on the Edge is updated whenever a new model is produced by 
the Cloud. The diabetes prediction IoT application uses FogBus, which consists of 
various hardware and software components as described below: 

Hardware Components

• Medical Body Area Network (MBAN): It consists of multiple IoMT sensor nodes, 
where each node collects, samples, and communicates biomedical information. 
These nodes are low-powered IoMT devices with limited computing and storage 
capabilities. The collected information is transmitted to the connected gateway 
devices using different communication protocols such as Wi-Fi, Zigbee, and Blue-
tooth. Different IoMT devices are used to measure different diabetes risk factors, 
such as hypertension, obesity, cholesterol level, depression, serum uric acid level, 
physical activity, and glucose level. In this case study, we consider a hypertension 
monitor, Omron EVOLV HEM-7600 T-E that measures the systolic and diastolic

Fig. 3 Smart healthcare diabetes monitoring and prediction architecture 
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blood pressure of a patient. The measurements are then sent to a smartphone 
gateway device.

• Gateway Device: The smartphone gateway device receives the hypertension 
data transmitted by the medical sensors. This information includes a timestamp, 
systolic blood pressure, and diastolic blood pressure. The data is then forwarded 
to the edge node for further processing.

• Edge Node: FogBus provides the gateway devices with low-latency and high-
bandwidth access to one or multi-hop away Edge node, consisting of heterogenous 
edge servers, for real-time processing and diabetes prediction. Edge resources 
close to the IoMT devices support the stringent requirements of smart healthcare 
applications in terms of latency and throughput. In our case study, the edge node 
uses a trained machine learning model to predict the prevalence of diabetes in a 
user based on the values of risk factors.

• Cloud Node: FogBus extends the computing and storage capabilities of Edge by 
providing access to multiple Cloud nodes. Cloud provides scalable resources in 
terms of processing and storage, supporting computing requirements of IoMT 
applications such as data analytics for prognosis/diagnosis of chronic diseases. In 
our study, Cloud servers are for data storage and Big Data analytics. They train 
machine learning models using the data collected from sensors. The trained model 
is sent back to the Edge for real-time prediction. Our case study uses the Random 
Forest machine learning model as it is found to be the most accurate for diabetes 
prediction [24]. 

Software Components

• Master: This component runs on both Edge and Cloud nodes. The master compo-
nent at the edge node receives the following information: (1) the input hyperten-
sion data from the gateway devices, (2) the trained machine learning model for 
prediction from the master component at the Cloud node, and (3) the diabetes 
prediction requests from the users. The master at the Cloud node receives the 
data from the edge node to train a machine learning model for diabetes predic-
tion. The security manager module within the master aids in secure communica-
tion between different components and ensures authorised data access. The data 
manager module communicates the data, prediction model, and prediction results 
with the corresponding component. The resource manager module receives infor-
mation regarding the available computing resources of all task executors (i.e. 
CPU utilisation, memory utilisation, and disc i/o), network characteristics (i.e. 
latency, network i/o, and bandwidth), and requirements of IoMT applications (i.e. 
computing power and deadline). The scheduler receives the list of actors and 
schedules the task request, i.e. machine learning model development or diabetes 
prediction, to one of the available actors. The scaler module is used to initiate a 
new master for scalability.

• Actor: This component runs on Edge and Cloud nodes. The task executor initiator 
module is called whenever the master component assigns a model development
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task or a diabetes prediction task to an actor on the Edge and Cloud nodes, respec-
tively. It initiates a task executor component and defines where the result (i.e. 
prediction result or prediction model) must be forwarded by the task executor. The 
master initiator component is called when the scaler module of the master compo-
nent is executed to scale up the application’s resources. It initiates a new master 
component on a new host and receives the list of actors from the master component 
on which the scaler module had executed. The resource monitor module collects 
the resource utilisation values of associated task executors in real time and sends 
them to the resource manager module within the master. In our case study, there 
are two actor components: (1) the diabetes prediction actor which runs on Edge 
nodes and is responsible for initiating a task executor for predicting the preva-
lence of diabetes using a trained machine learning model, and (2) the Machine 
Learning model actor: This component runs on Cloud nodes and is responsible 
for initiating a task executor to develop a machine learning prediction model.

• Task executor: This component performs the tasks allocated by the actor compo-
nent. The diabetes prediction task executor involves a predictor module which 
uses the developed prediction model to predict the prevalence of diabetes for a 
user based on the input data from hypertension monitoring IoT device, and the 
machine learning model task executor is a machine learning model module which 
trains a diabetes dataset and develops the diabetes prediction model based. The 
data filtering and pre-processing module filters the data by removing irrelevant 
observations to diabetes machine learning development. 

6.2 A Deployment Application Demonstrator 

We demonstrate our smart healthcare diabetes monitoring and prediction IoMT appli-
cations. As shown in Fig. 4, the deployment consists of a blood pressure IoMT device, 
a diabetes prevalence risk predictor on the Edge, and a machine learning prediction 
model builder in the Cloud. We use Omron EVOLV HEM-7600 T-E blood pressure 
monitor that measures the systolic and diastolic pressure of the user. It senses and 
sends the blood pressure data to the smartphone gateway device using Bluetooth 
communication. In turn, the smartphone filters the data by removing the user’s iden-
tity for privacy. The timestamp, systolic blood pressure, and diastolic blood pressure 
are displayed on the gateway device. The anonymous data is forwarded to the edge 
node for predicting the risk of diabetes prevalence. The prediction model is trained 
offline in the Cloud.

6.3 Diabetes Dataset 

We consider the Pima Indian Diabetes dataset from the National Institute of Diabetes 
and Digestive and Kidney Diseases. The dataset diagnostically determines whether
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Fig. 4 Smart healthcare diabetes monitoring and prediction deployment

a patient is diabetic or non-diabetic based on medical measurements. The dataset 
includes information for female patients of Pima Indian Heritage who are at least 
21 years old. It consists of nine features as follows. (1) pregnancies: number of 
times pregnant, (2) glucose: plasma glucose concentration at 2 h in an oral Glucose 
Tolerance Test (GTT), (3) diastolic blood pressure (mm Hg), (4) triceps skin fold 
thickness (mm), (5) 2-h serum insulin (µU/ml), (6) Body Mass Index (BMI) (weight 
in kg/(height in m)2), (7) diabetes pedigree function: expected genetic influence of 
diabetic and non-diabetic relatives (parents, grandparents, full siblings, half-siblings, 
full aunts and uncles, half aunts and uncles, and first cousins) on the patient’s eventual 
diabetes risk, (8) age: age (years), and (9) outcome: diagnosis of diabetes—value 1: 
diabetic and value 0: non-diabetic. The dataset consists of medical records of 768 
patients, out of which 268 (34.9%) are diabetic and 500 (65.1%) are non-diabetic. 
Figure 5 shows the distribution of numerical features for the diabetic and non-diabetic 
classes [24]. Table 1 shows a sample of the Pima Indian dataset for 10 patients.

The dataset is pre-processed by removing observations that have missing values. 
As  shown in Fig.  5, there exist observations with a “0” value for skin thickness, 
blood pressure, and BMI features, indicating missing values. Consequently, the pre-
processed dataset includes 537 records with 179 (33.3%) diabetics and 358 (66.7%) 
non-diabetics. The pre-processed file is saved in Comma Separated Value (.csv) file. 

6.4 Machine Learning Model: Training and Deployment 

We use the Random Forest machine learning model for diabetes prediction as it 
outperforms other machine learning models for diabetes prediction [25], using the 
diabetes dataset in.csv format, as shown in Fig. 6. The model is trained in the Cloud 
and the prediction model is deployed on the Edge.

For model development and validation, we divide the PIMA Indian dataset into 
70% (training dataset) and 30% (validation dataset), respectively. The training dataset 
is used to develop a diabetes prediction model and the validation dataset is used
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Fig. 5 Distribution of numerical features for diabetic and non-diabetic classes

to evaluate the performance of the developed model. We implement the Random 
Forest machine learning model using scikit learn library of Python 3.10 programming 
language with the following optimal parameters, 100 n_estimators (the number of 
decision trees in the forest), 5 max_depth (the maximum depth of each tree), all 
features max_features (the number of features to be considered when looking for the 
best split), and entropy criterion (function to measure the quality of a split).
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Table 1 Sample patient record data from the Pima Indian dataset 

Pregnancies Glucose Diastolic 
blood 
pressure 

Triceps 
skin fold 
thickness 

Insulin Body 
Mass 
Index 

Diabetes 
pedigree 
function 

Age Outcome 

1 89 66 23 94 28.1 0.167 21 0 

0 137 40 35 168 43.1 2.288 33 1 

3 78 50 32 88 31 0.248 26 1 

2 197 70 45 543 30.5 0.158 53 1 

1 189 60 23 846 30.1 0.398 59 1 

5 166 72 19 175 25.8 0.587 51 1 

0 118 84 47 230 45.8 0.551 31 1 

1 103 30 38 83 43.3 0.183 33 0 

1 115 70 30 96 34.6 0.529 32 1 

3 126 88 41 235 39.3 0.704 27 0

Fig. 6 Machine learning model development and prediction

7 Conclusions and Final Remarks 

The rising cost of health care has been a major concern in most countries. For the 
past decade, the USA has spent more than 17% of its GDP on health care each year 
[18]. A recent Australian Institute of Health and Welfare report [17] noted that health 
spending accounted for 10% of overall economic activity in Australia during 2017– 
18, and it increased dramatically due to the COVID-19 pandemic. As this vision 
paper proposes new Edge computing technologies for enabling IoT applications that 
occur in areas such as Smart Hospitals and health care, it presents significant national
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benefits by increasing the efficiency of hospital/healthcare management. The central 
theme of the proposed vision is to enable the creation of technologies for reliable and 
QoS-driven execution of IoT applications in networked and mobile environments for 
healthcare/Smart Hospitals applications. 

Hospitals’ existing reliance on Cloud computing has certainly begun to trans-
form this sector, but at the same time has introduced certain challenges, which our 
vision begins to address. For example, hospitals are increasingly dealing with the 
phenomenon of staff bringing their personal devices to hospitals, and using them 
to create and share sensitive information. One way to overcome this challenge is 
to use micro-services on staff’s personal devices, which can be used to capture and 
transmit data safely. Another challenge that hospitals face is transitioning from in-
ward to in-home care. In such cases where patients can return home and keep being 
treated, perhaps they could be given an edge device that can act as a gateway to 
collecting and transmitting sensitive data to the hospital Cloud while also allowing 
for micro-service placement policies to be implemented. 

The problem addressed by this vision benefits mission-critical applications in 
several other domains, including smart cities, smart transport, and smart agriculture. 
As IoT applications are projected to have an economic impact of $11 trillion per 
year by 2025 (equivalent to about 11% of the world economy), the realisation of 
the proposed vision will create a significant business opportunity for businesses in 
computing technologies and the IoT applications marketplace. 

This vision paper’s objective is to propose approaches for the creation of algo-
rithms and software systems for managing Edge computing resources and efficient 
deployment of IoT applications in Smart Hospital’s domains to meet their QoS 
requirements. To achieve this objective, our future directions entail the following 
guidelines: 

1. Create an architectural framework and principles for Edge computing for IoT 
applications in Smart Hospitals. 

2. Propose new algorithms for QoS-based provisioning of resources in Edge 
computing environments for IoT-based Smart Hospital applications and tech-
niques to monitor and manage virtualised infrastructures. 

3. Propose new algorithms for scheduling IoT applications in Edge computing 
environments by considering diverse topology and contextual variations such 
as doctor mobility, criticality, and privacy issues in Smart Hospitals. 

4. Develop mechanisms and policies for task pre-emption, resource replication, and 
monitoring and reactive approaches to enhance system resilience under failures 
or performance issues. 

5. Develop a software platform—incorporating the above mechanisms and tech-
niques—and deploy it within the Melbourne Smart Hospital Living Lab and 
provide real-world demonstrator real-time IoT applications. 

In summary, the realisation of this proposed vision will lead to (a) architectural 
principles for Edge computing for real-time IoT applications, (b) innovative algo-
rithms for scheduling IoT applications on the Edge and Cloud resources, (c) novel
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software technology for the management of Edge resources, and (d) application 
demonstrators in healthcare/Smart Hospitals area. 
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