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a b s t r a c t

In Desktop Grids, volunteers (i.e, resource providers) have heterogeneous properties and dynamically join
and leave during execution. Moreover, some volunteers may behave erratically or maliciously. Thus, it is
important to detect and tolerate erroneous results (i.e., result certification) in order to guarantee reliable
execution, considering volatility and heterogeneity in a scheduling procedure. However, existing result
certification mechanisms do not adapt to such a dynamic environment. As a result, they undergo high
overhead and performance degradation.
To solve the problems, we propose a new Group-based Adaptive Result Certification Mechanism

(GARCM). GARCM applies different result certification and scheduling algorithms to volunteer groups
that are constructed according to their properties such as volunteering service time, availability and
credibility.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

AGrid system is a platform that provides access to various com-
puting resources owned by institutions by making virtual organi-
zations [15,16]. In contrast, a Desktop Grid system is a platform
that achieves high throughput computing by harvesting a num-
ber of idle desktop computers owned by individuals at the edge
of the Internet using peer to peer computing technologies [17–25].
TheDesktopGrid systems1 usually support embarrassingly parallel
applications that consist of a lot of instances of the same compu-
tation with each data. The applications are usually involved with
scientific problems requiring large amounts of processing capacity
over long periods of time. Recently, there has been a rapidly grow-
ing interest in Desktop Grid systems because of the success of the
most popular examples, i.e., GIMPS [26], distributed.net [27] and
SETI@Home [28].
A Desktop Grid computing environment mainly consists of

client, volunteer and server, as shown in Fig. 1. A client is a parallel
job submitter who requests results. A volunteer is a resource
provider that donates its idle computing resources. A server is a
centralmanager that controls submitted jobs and volunteers. It can
have a file server to maintain tasks and results files. A client first
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submits a parallel job to a server. The job is then divided into sub-
jobs that have their own specific input data. The sub-job is called
a task. The server distributes tasks to volunteers using scheduling
mechanisms. Each volunteer executes its task when idle. When
each volunteer subsequently finishes its task, it returns the result
of the task to the server. Finally, the server returns the final result
of the job back to the client.
A Desktop Grid computing is complicated by heterogeneous

capabilities, failures, volatility (i.e., intermittent presence), and
lack of trust [24,25,29] because it is based on desktop computers
(i.e., volunteers) at the edge of the Internet. In particular,
volunteers at the edge of the Internet are exposed to link and
crash failures. In addition, they can dynamically join and leave
in the middle of an execution without impediment. Thus, public
execution (i.e., the execution of a task as a volunteer) may be halted
arbitrarily. Moreover, volunteers are not dedicated exclusively to
Desktop Grid computing, so public executions become temporarily
suspended by a private execution (i.e., the execution of a private
job as a personal user). In this paper, we regard such unstable
situations as volunteer autonomy failures because they lead to delay
and blocking of task execution and even partial or entire loss of the
execution. The volunteer autonomy failures occurmore frequently
than in a Grid computing environment because a Desktop Grid
computing system is based on dynamic desktop computers.
Volunteers have different occurrence rates for volunteer autonomy
failures according to their execution behavior. In addition, since any
node can participate as a volunteer (i.e., resource provider), some
malicious volunteers tamper with the computation and return
corrupted results. Therefore, Desktop Grid computing systems
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Fig. 1. Desktop Grid computing environment.
must not only adapt to such a dynamic environment, but also
detect and tolerate the erroneous result (i.e., result certification)
in order to guarantee reliable execution in such a distrustful
environment.
To this end, existing Desktop Grid systems exploited re-

sult certification mechanisms such as voting and spot-checking
[30,1–14,31]. However, (i) existing result certificationmechanisms
do not adapt to the distinct features resulting from the heteroge-
neous properties and volatility; (ii) There is no dynamic schedul-
ing for result certification although the result certification is tightly
related with scheduling in that both the special task for spot-
checking and the redundant tasks for voting are allocated to
volunteers in a scheduling procedure; (iii) Existing Desktop
Grid systems simply used the eager scheduling mechanism
[32,20,33,21,2], although the result certification and schedul-
ing mechanisms are required to classify volunteers into groups
that have similar properties, and then dynamically apply various
schedulingmechanisms to each group. As a result, they suffer from
high overhead and performance degradation because they do not
adapt to a dynamic Desktop Grid computing environment.
To solve these problems, we propose a new Group-based Adap-

tive Result Certification Mechanism (GARCM) that adapts to a
dynamic Desktop Grid computing environment. GARCM also pro-
vides dynamic scheduling algorithms for result certification. It dy-
namically performs result certification and scheduling algorithms
to each group according to its properties such as volunteering ser-
vice time, availability, and credibility. To this end, it constructs
volunteer groups that are classified on the basis of the volunteer’s
properties, and applies appropriate scheduling and result certifi-
cation algorithms to each volunteer group. Consequently, GARCM
can reduce the overhead and latency and therefore complete more
tasks while guaranteeing reliable results.
The rest of the paper is structured as follows. Section 2

presents a new taxonomy of result certification and describes
limitations of existing scheduling for result certification in Desktop
Grid. Section 3 describes GARCM in details. Section 4 presents
the analysis of result certification mechanisms and experimental
results. Section 5 concludes the paper.
2. Background and motivation

2.1. A taxonomy of result certification

Result certification aims to detect and tolerate erroneous re-
sults in order to guarantee a trusted execution. Some works have
focused on result certification in a Desktop Grid computing envi-
ronment [25,29,30,1–13]. A new taxonomy of result certification is
presented in terms of a judgment method, a comparison object, a
resource selection method and response to worker’s behavior, as
shown in Fig. 2.
Result certification is categorized into two approaches accord-

ing to the judgment method: voting and spot-checking (or sam-
pling). In the voting approach, the same tasks are distributed to
different volunteers (that is, voting group) as many as the number
of redundancies or until the predefined threshold is reached. Re-
dundancy makes it possible to identify the correct result against
an erroneous one if there are sufficiently more good volunteers
than bad ones. When the results are returned from volunteers (or
workers), they are compared to verify the correctness. In major-
ity voting, if the majority of volunteers return the same result, it
is regarded as the correct one. In the threshold-based weighted
voting, if the results reach the predefined threshold (for example,
error rate, credibility and reliability), they are considered trust-
worthy.Weighted voting uses the reputation of volunteers (for ex-
ample, credibility, reliability and trust) to compare the results. If
volunteers have a higher reputation, they are considered to be
more trustworthy. For example, the votes of highly-reputed volun-
teers carrymoreweight than others. In the spot-checking approach,
the special tasks with different inputs, whose result is already
known (for example, one-way hash function and quiz), are dis-
tributed to volunteers. When the results are returned from volun-
teers, they are compared with the already-known result produced
by a reliable resource (that is, the oracle). If volunteer’s response
is different (in the simple spot-checking) or the error rate is not
within the error-tolerant range or does not reach the predefined
threshold (in the threshold-based spot-checking or the threshold-
based weighted spot-checking), the volunteer is regarded as
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Fig. 2. A taxonomy of result certification.
malicious and the results returned are discarded. A comparison
procedure of the voting approach, which verifies whether the re-
sult is correct or not, is performed between workers. On the other
hand, the spot-checking approach comparesworker and the oracle.
Thus, it needs a reliable resource (that is, the oracle) to generate a
reliable canonical result. The voting approach is apparently more
costly than the spot-checking approach, because it requires a re-
dundancy of at least two per task. Spot-checking and voting can be
combined together.
Result certification is classified according to the object com-

pared: the final result of a task, the intermediate result of a task
and the result of a special task. The final result of a task is mainly
used in the voting approach. The intermediate result of a task (that
is, a checkpoint) is mainly used for long-running applications in
the voting approach in order to detect errors earlier. Additional
procedures are needed for the checkpoint approach, for example,
howmany or often to do checkpoint or how to synchronize several
checkpoints that volunteers take at different times due to volatil-
ity. The result of a special task (for example, a quiz or a one-way
hash function) is used in the spot-checking approach.
Result certification accompanies resource selection methods to

choose volunteers for a voting group or for spot-checking, and is
categorized according to the resource selection method: reputa-
tion, non-reputation and QoS. The reputation-based resource se-
lection chooses volunteers according to their reputation, based on
criteria such as credibility, volatility, reliability and result return
rate. For example, highly-reputed volunteers are first selected or
badly-reputed volunteers are excluded from a scheduling proce-
dure. Non-reputation-based resource selection chooses volunteers
randomly or on a FCFS (First Come First Served) basis. Volunteers
can be selected according to QoS such as the deadline of a task or
homogeneous hardware and software types and versions.
Result certification can be classified according to the calculation

method of redundancy or spot-checking rate. It is very important
how many redundancies for voting are needed or how often spot-
checking is performed because it is directly related to overhead,
performance and correctness. First, the number of redundancies
for voting and a spot-checking rate can be calculated depending on
volunteer reputation such as failure rate, sabotage rate, volatility
and credibility. For example, the higher the reputation, the lower
the redundancy and spot-checking rate. Second, they can be
decided randomly or as an odd number formajority voting. Finally,
voting and spot-checking can be performed until the threshold (for
example, acceptable error rate) is satisfied.
Result certification can be categorized according to a positive

or negative response to worker behavior: incentive and penalty,
respectively. Incentive-based responses aim to encourage resource
owners to donate their resources reliably and trustworthily by
giving rewards (for example, money, resources, ranking, high
priority in a scheduling procedure, etc.) to volunteers for their
donation. Penalty-based responses attempt to inflict punishment
(for example, blacklist, exclusion from scheduling, decrease in
reputation and ranking, etc.) on untrustworthy volunteers.

2.2. Motivation

A few studies have been made on scheduling for result
certification in a Desktop Grid computing environment [2,9–11,
14,31]. Bayanihan [2] proposed majority voting and spot-checking
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based on an eager scheduling algorithm. Especially, a credibility-
enhanced eager scheduling algorithm is also proposed. In such
algorithms, the more a volunteer passes spot-checking, the higher
its credibility. The more volunteers within a voting group agree on
a result, the higher its credibility becomes. Volunteers continue to
compute the task and perform spot-checking until the credibility
threshold is satisfied. When the desired credibility threshold is
reached, the result is accepted as final. In these algorithms, the
voting group for majority voting is not built before tasks are
distributed to volunteers. Instead, it is built on the fly. Whenever
a faster volunteer is allocated a task, it is added to the voting
group for the task. As a result, the members in the voting group
have different credibility. Taufer et al. [9] proposed homogeneous
redundancy to tolerate variations in numerical processing due to
a variety of hardware and software malfunctions. Homogeneous
redundancy dispatches redundant tasks to numerically identical
volunteers. Zhao et al. [10] proposed result verification and trust-
based scheduling mechanisms, combining a reputation system
with the basic verification schemes such as majority voting and
quiz. Reputation systems maintain trusted and blacklists not
only to select trusted volunteers, but also to exclude malicious
volunteers from a scheduling procedure. Sonneck et al. [11]
proposed an adaptive reputation-based scheduling that uses
worker reliability for efficient task allocation. Worker reliability
is calculated based on the number of correct results. Reputation-
based scheduling attempts to form redundancy groups (that is,
voting groups) that satisfy the likelihood of correctness (LOC),
which means group workers will return a majority of correct and
timely results. The redundancy group can be organized randomly
or in order of reliability. Kim et al. [14] proposed a priority-based
list scheduling mechanism for sabotage tolerance with deadline
tasks. The scheduling mechanism selects volunteers according
to credibility and result return probability, satisfying both the
correctness of results and task deadlines.
However, there are some limitations in existing scheduling

mechanisms for result certification.

(1) They do not adapt to dynamic Desktop Grid computing environ-
ment. Existing scheduling and result certification mechanisms
do not take into account heterogeneous properties and vol-
unteer autonomy failures in scheduling and result certifica-
tion procedures (i.e., when deciding the number of redundancy
and spot-checking rate, or when selecting new volunteers for
failed or slowvolunteers). As a result, they requiremore redun-
dancy to achieve result certification as well as more overhead.
They cannot complete result certification because of delay and
blocking of task execution.

(2) There are no dynamic scheduling mechanisms for result certi-
fication. Result certification is tightly related with schedul-
ing in the sense that both the special task for spot-checking
and redundant tasks for voting are allocated to volunteers in
a scheduling procedure. In the presence of failure, the failed
tasks are reallocated to new volunteers in a fault tolerant
scheduling procedure. However, existing Desktop Grid com-
puting systems [19,32,20,33,21] simply use an eager schedul-
ing mechanism, which is not appropriate for result certifica-
tion. For example, consider a voting group built on the fly in
Bayanihan [2]. When a volunteer is allocated a task, it is added
to the voting group for the task. At this time, eager scheduling
simply selects the fastest volunteer as a member of the vot-
ing group for the taskwithout considering the credibility of the
volunteer. As a result, the credibility of the voting group fluc-
tuates. Although a volunteer with a high credibility makes the
credibility of the voting group higher, another volunteer with
low credibility can reduce the credibility. Thus, it becomes dif-
ficult to agree on the same result. In other words, more volun-
teers are needed to reach agreement. Consequently, delays and
overhead problems arise. In the case of failures,when the failed
volunteer is replacedwith a new volunteer, the same problems
also arise.

(3) They use only one scheduling mechanism at a time statically.
In Desktop Grid computing environments, volunteers have
various properties, e.g., capacity, location, availability, cred-
ibility, etc. Thus, various scheduling and result certification
mechanisms should be dynamically applied at the same time
according to the volunteer’s properties. However, existing
mechanisms use only one mechanism at a time. The same
scheduling, result certification, and fault tolerant algorithms
are applied to all volunteers without considering their individ-
ual properties. As a result, they experience high overhead and
scalability problems.

To overcome these limitations, we propose a new group-based
adaptive result certificationmechanism on the basis of a volunteer
group constructed according to volunteering service time, volatil-
ity, availability and credibility. The proposed mechanism applies
different scheduling and result certification algorithms to volun-
teer groups according to their properties.

3. Group-based Adaptive Result Certification Mechanism

Group-basedAdaptiveResult CertificationMechanism (GARCM)
dynamically performs different scheduling and result certification
algorithms suitable for volunteer groups that are classified on the
basis of the properties of volunteers such as volunteer availability,
volunteering service time and volunteer credibility. First, we present
the construction of a volunteer group according to volunteer prop-
erties. Second, we illustrate the application of scheduling and re-
sult certification algorithms to volunteer groups, that is, how to
select volunteers for voting and spot-checking and how to calcu-
late the redundancy or spot-checking rate according to volunteer
group’s properties.

3.1. Constructing volunteer groups

Volunteers are required to first be formed into homogeneous
groups in order to apply different scheduling and result certifi-
cation algorithms suitable for volunteers during the scheduling
phase. GARCM classifies volunteers into four volunteer groups on
the basis of volunteer availability αv , volunteering service time Θ ,
and volunteer credibility Cv , that is, A′, B′, C ′, and D′ volunteer
groups. In the A′ volunteer group, all features are high. In the B′ vol-
unteer group, both αv and Cv are high. In the C ′ volunteer group,
only Θ is high. Finally, in the D′ volunteer group, all features are
low.

3.1.1. Classifying volunteers
When classifying volunteers, their CPU and memory capacities

are important factors. The most important factors, however,
are volunteering time, volunteer availability and credibility
because a Desktop Grid computing system is based on dynamic
desktop computers. In a Desktop Grid computing environment,
the capacities of desktop computers are different, while the
volunteering time, availability, and credibility are very diverse
[19,34,24,25]. Therefore, the computation time is more affected by
the latter factors. In this paper, we classify volunteers according to
volunteer availability and volunteering service time. Volunteering
time, volunteer availability and volunteering service time are
defined as follows.

Definition 1 (Volunteering Time). Volunteering time (Υ ) is the
period when a volunteer is supposed to donate its resources.

Υ = ΥR + ΥS .
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Fig. 3. The classification of volunteers and volunteer groups.

Here, reserved volunteering time (ΥR) is the reserved time when
a volunteer provides its computing resources. Volunteers mostly
perform public execution during ΥR, rarely performing private
execution. On the other hand, selfish volunteering time (ΥS) is
unexpected volunteering time. Thus, volunteers usually perform
private execution during ΥS , while occasionally performing public
execution.

Definition 2 (Volunteer Availability). Volunteer availability (αv) is
the probability that a volunteer will be correctly operational and
be able to deliver volunteer services during the volunteering time
Υ

αv =
MTTVAF

MTTVAF +MTTR
.

Here,MTTVAF means ‘‘mean time to volunteer autonomy failures’’,
and MTTR means ‘‘mean time to rejoin’’, MTTVAF means the
average time before volunteer autonomy failures happen, and
MTTR means the mean duration of volunteer autonomy failures.
αv reflects the degree of volunteer autonomy failure, whereas the
traditional availability in distributed systems is mainly related
with crash failure.
Volunteering service time is defined as follows.

Definition 3 (Volunteering Service Time). Volunteering service
time (Θ) is the expected service timewhena volunteer participates
in public execution during Υ

Θ = Υ × αv.

In a scheduling procedure, Θ is more appropriate than Υ because
Θ represents the time when a volunteer actually executes each
task in the presence of volunteer autonomy failures.
Volunteers are categorized into four classes (i.e., A, B, C , D

classes) according to αv andΘ , as shown in Fig. 3(a).

3.1.2. Classifying and making volunteer groups
A server selects volunteers as volunteer group members

according to volunteer properties such as volunteering service
time and volunteer credibility.
Volunteer credibility is defined as follows.
Fig. 4. Algorithm of volunteer group construction.

Definition 4 (Volunteer Credibility). Volunteer credibility Cv repre-
sents the probability of result correctness that a volunteer returns.

Cv =
CR

ER+ CR+ IR
.

Here, ER means the number of erroneous results, CR means
the number of correct results, and IR means the number of
incomplete results. ER + CR + IR means the total number of
tasks that a volunteer executes. When a volunteer does not
complete spot-checking or majority voting on account of crash
failure and volunteer autonomy failures, IRoccurs in aDesktopGrid
computing environment. If a volunteer passes the spot-checking,
the credibility increases. If volunteers within a voting group reach
agreement for majority voting, their credibility also increases.
Volunteer groups are categorized into four classes, as shown

in Fig. 3(b), when both Θ and Cv are considered in a grouping
procedure. Here, ∆ is the expected computation time of a task. ϑ
is the desired credibility threshold that a task achieves.
Fig. 4 shows the algorithm of volunteer group construction.

Registered volunteers are classified into A, B, C , and D classes
according to volunteering service time and volunteer availability.
Then, each volunteer group is constructed according to volunteer
credibility and volunteering service time.

3.1.3. Maintaining volunteer groups
Volunteer groups are constructed at a server through either of

two modes: time-based and count-based. The time-based mode
builds volunteer groups at regular intervals if the tasks requiring
scheduling remain. The count-based mode constructs volunteers
groups when the number of participating volunteers is larger than
or equal to a predefined number k, which depends on the size



S. Choi, R. Buyya / Future Generation Computer Systems 26 (2010) 776–786 781
(a) Parallel majority voting. (b) Sequential majority voting.

Fig. 5. Construction of voting group.
of volunteer groups or the number of redundancies. The size of
a volunteer group s is related with maintenance cost, i.e., the
management of task agents and fault tolerance. Volunteer groups
are kept until a scheduler can distribute tasks tomembers. In other
words, if all members do not have enough time to execute a task,
the volunteer groups are dismissed.
A member of a volunteer group is replaced by another if it

continuously returns incorrect results or fails. In the case of failure,
the failed member is replaced by a new volunteer.

3.2. Applying scheduling and result certification to volunteer group

3.2.1. Result certification for volunteer group
Result certification is dynamically applied to each volunteer

group. GARCMprovides the following result certification strategies
as follows.
The A′ volunteer group has a sufficiently high Cv , high Θ , and

high αv to execute tasks reliably. There is high possibility that the
A′ volunteer group will produce the correct results. If voting is
used for result certification, the sequential voting group approach
is more appropriate than the parallel one because the former can
perform more tasks. In Fig. 5(b), in case of the Ti+2 task, if the first
two results generated at V1 and V0 are the same, there is no need to
execute the Ti+2 task at V2 because the majority (i.e., 2 out of 3) is
already is achieved. Therefore, since other tasks can be executed
instead of the executions such as the solid line in Fig. 5(b), the
sequential voting group can perform more tasks.
The B′ volunteer group has a high Cv and high αv , but a low Θ .

It has a high possibility of producing correct results. However, it
cannot complete tasks because of the lack of computation time.
In addition, volunteer autonomy failures occur frequently in the
middle of execution. Therefore, the manager of B′ volunteer group
must provide not only task migration in order to execute the
tasks continuously but also fault tolerant algorithms to tolerate
volunteer autonomy failures. During task migration, the former
volunteer affects the latter volunteer (i.e., the volunteer to which
a task migrates) to which a task is migrated. In other words, if
the latter volunteer is selected wrongly, it might ruin the correct
result that was generated by the former volunteer. Therefore,
the latter volunteer must be chosen among B′ or A′ volunteer
groups, rather than C ′ or D′ volunteer groups. Spot-checking is
additionally performed by the former volunteer as well as by the
latter volunteer to check the correctness again. Besides, sequential
voting is more appropriate than parallel voting, similar to the A′
volunteer group.
The C ′ volunteer group has a high Θ , but a low Cv and low αv .

It has enough time to execute tasks. However, its results might
be incorrect. Therefore, in order to strengthen the credibility,
the C ′ volunteer group must do more spot-checking or place
more redundancy than the A′ or B′ volunteer groups. Parallel
voting is more appropriate than sequential voting. If sequential
voting is adopted, the voting procedure is frequently delayed
because each volunteer suffers from volunteer autonomy failures
owing to a low αv . It also takes longer time and incurs higher
overhead to complete result certification. In the case of the parallel
voting group, however, the overhead and the completion time
are relatively small because the voting procedure for each task is
completed within one step, as shown in Fig. 5(a).
The D′ volunteer group has a low Cv , low Θ , and low αv . It

has insufficient time to execute tasks. In addition, there is scarcely
any possibility of producing correct results. Moreover, volunteer
autonomy failures occur frequently in the middle of an execution.
Therefore, tasks are not allocated to the D′ volunteer group not
only because management cost is too expensive, but also because
results are incorrect.

3.2.2. Dynamic scheduling for result certification
Each volunteer group has its own scheduling algorithm for

result certification according to the above strategies. In general,
the tasks are scheduled in the following order, that is, the A′,
C ′ and B′ volunteer groups sequentially because the A′ and
C ′ volunteer groups have enough time to execute tasks. The
scheduling algorithms for each volunteer group are as follows.
Scheduling for result certification in the A′ volunteer group is

as follows. (1) Order the A′ volunteer group by αv and then by Θ .
(2) Evaluate the number of redundancies or the spot-checking rate.
(3) Construct a sequential voting group, or choose some volunteers
for spot-checking on the basis of Θ . (4) Distribute tasks in the
manner of a sequential voting group, or allocate special tasks for
spot-checking. (5) Check the collected results.
Scheduling for result certification in the B′ volunteer group is as

follows. (1) Order the B′ volunteer group by Θ and then by αv . (2)
The same as for the B′ volunteer group. (3) Construct a sequential
voting group, or choose some volunteers for spot-checking on
the basis of Θ . (4)–(5) The same as for the A′ volunteer group.
Especially, the B′ scheduling algorithm is required to perform
additional spot-checking during task migration because of lack of
volunteering service time.
Scheduling for result certification in the C ′ volunteer group is

as follows. (1) Order the C ′ volunteer group by Cv and then αv . (2)
Evaluate the number of redundancies or the spot-checking rate.
(3) Construct a parallel voting group, or choose some volunteers
for spot-checking on the basis of Cv . (4)–(5) The same as for the
A′ volunteer group. The C ′ scheduling algorithm should handle
volunteer autonomy failures.

3.2.3. Calculating redundancy and the spot-checking rate
The number of redundancies for the voting and the spot-

checking rate are differently applied to each volunteer group. In the
case of redundancy for voting, the C ′ volunteer group has a greater
redundancy number than the A′ and B′ volunteer groups because
of a low credibility. Similarly, spot-checking rate is ordered as C ′,
B′ and A′. The B′ volunteer group has a higher number of spot-
checking than A′ volunteer group on account of task migration.
The number of redundancies r for majority voting is dynami-

cally calculated through Eq. (1). Here, r = 2k + 1. The final error
rate of majority voting is evaluated as follows [35].
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Fig. 6. The number of completed tasks without result certification.

ε(C ′v, r) =
2k+1∑
i=k+1

(
2k+ 1
i

)
(1− C ′v)

i(C ′v)
(2k+1−i) (1)

which is bounded by [4C
′
v(1−C

′
v)]
k+1

2(2C ′v−1)
√
πk
.

Here, parameter C ′v means the probability that volunteers
within each volunteer group generate correct results.
Suppose that a desired credibility threshold is ϑ . GARCM

calculates the number of redundancies for each volunteer group
if (1−ϑ) ≥ ε(C ′v, r). Consequently, the A

′ and B′ volunteer groups
have a small r , so it can reduce the overhead ofmajority voting and
execute more tasks. In contrast, the C ′ volunteer group has a large
r . The large r makes the credibility high.
Spot-checking rate q is also calculated through Eq. (2). The final

error rate of spot-checking is evaluated as follows [30].

ε(q, n, C ′v, s) =
sC ′v(1− qs)

n

(1− C ′v)+ C ′v(1− qs)n
(2)

where, n is the saboteur’s share in the total work and s is its
sabotage rate.
If n and s are given, the spot-checking rate, q, of each volunteer

group is calculated. GARCM calculates the rate of spot-checking
for each volunteer group if (1 − ϑ) ≥ ε(q, n, C ′v, s). The spot-
checking rates of the A′ and B′ volunteer groups are smaller than
that of the C ′ volunteer group. Therefore, the A′ and B′ volunteer
groups can reduce overhead, and therefore executemore tasks. The
C ′ volunteer group can increase its credibility.

4. Analysis and evaluation

4.1. Analysis

Existing result certificationmechanisms are analyzed according
to the taxonomy shown in Fig. 2. Table 1 shows a mapping of the
taxonomy to existing result certification mechanisms.
According to survey and analysis, result certification should

be tightly related to scheduling in the sense that both the
special task for spot-checking and the redundant tasks for
voting are allocated to volunteers in a scheduling procedure.
However, most existing Desktop Grid systems simply use eager
scheduling, not considering volunteer reputation. As a result,
there are high overhead, performance degradation, and scalability
problems. Desktop Grid systems should provide a new scheduling
mechanism for result certification, coupling resource reputation
that accounts for volatility, volunteering time and credibility with
result certification.
Result certification should be coupled with an incentive

mechanism. Incentive mechanisms aim to encourage resource
owners to donate resources eagerly, reliably and trustworthily
by giving rewards (e.g., money, resources, credit, ranking, etc.)
to volunteers for their donation, or penalties (e.g., blacklist)
to volatile and malicious volunteers. However, most existing
result certification mechanisms do not give incentive to reliable
volunteers in scheduling and result certification procedures. To
make Desktop Grid systems more reliable, Desktop Grid systems
should consider incentive mechanisms.

4.2. Simulation results

We evaluate GARCM with existing scheduling mechanism
for result certification. This evaluation focuses on how much
performance improvement will be gained depending on whether
or not the volunteer groups are considered in scheduling and
result certification procedures. GARCM is compared to eager
scheduling to which result certification has been applied. There
are considerable scheduling heuristics in Grids, e.g., MCT, MET,
SA, KPB, min–min, max–min, and sufferage heuristics [36,37]. In
this article, we adopt eager scheduling among existing scheduling
heuristics because it ismore straightforward and simple than other
heuristics in Grids. In particular, eager scheduling has been mainly
used in Desktop Grids [19,32,20,33,21] because it is more adaptive
to the dynamic computing environments of Desktop Grids than the
heuristics in Grids.
In our simulations, we model a number of scenarios using

different distributions for volunteer properties, as shown in
Table 2. The evaluation is based on a simulator modeled on
Korea@Home [34], which consists of a server andmany volunteers.
We intentionally set up volunteer groups which have different
volunteering service time Θ and volunteer availability αv . As the
performance metrics for comparing GARCM to eager scheduling,
our simulations use the number of completed tasks, the number of
redundancy and the error rate.
Table 2 shows a simulation environment with different volun-

teer groups, volunteering service time, and volunteer availability.
For each case in Table 2, 200 volunteers participated in our sim-
ulation for one hour. In Case 1, the A′ volunteer group has more
volunteers than the other groups. In Case 2, the C ′ volunteer group
hasmore volunteers than the other groups. Case 3 shows thatmore
volunteers belong to the A′ and C ′ volunteer groups as compared
to the other groups. In Case 4, theD′ volunteer group hasmore vol-
unteers than the other groups. When analyzing Table 2, Case 1 is
different from Case 2 with respect to volunteer credibility. Case 3
is different from Case 1 with regard to volunteer availability and
volunteer availability. Case 4 is different from Case 1 with respect
to volunteer availability and volunteering service time. Here, A′, B′,
C ′, and D′ represent the A′, B′, C ′, and D′ volunteer groups, respec-
tively. Here, P . (i.e., population) represents the number of volun-
teers. Each simulation was repeated 10 times per each case.
The range of MVT is set as 10–60 min. MTTVAF is configured

as 1/0.2–1/0.05 min. MTTR is set as 3–10 min. A task in the
application exhibits 18 min of execution time on a dedicated
Pentium 1.4 GHz. Suppose that s = 0.1 and n = 10 in spot-
checking.
Figs. 6–8 show the simulation results. Here, the ES represents

an existing eager scheduling mechanism. GARCM(A′), GARCM(B′)
and GARCM(C ′) mean the results performed by each volunteer
group, respectively. As shown in Figs. 6 and 7(a), and 8(a),
GARCM completes more tasks than the existing eager scheduling
mechanism, while satisfying the desired credibility threshold (or
desired error rate), as shown in Figs. 7(c), and 8(c). In particular,
the A′ volunteer group has an important role in gaining better
performance. When the number of members in the A′ volunteer
group decreases gradually (i.e., from Case 1 to Case 4), the
number of completed tasks decreases. In contrast, as the number
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Table 1
Analysis of result certification.

Mechanism Comparison
object

Judgment method Resource
selection
method

Calculation
method

Response Description

Golle et al. [1] Result of a
special task
(one-way hash
function)

Sampling (simple
sampling–randomly
selected input)

Not mentioned Not mentioned Not mentioned -Propose ringers and bogus
ringers mechanisms

Sarmenta [2] -Result of a
special task for
sampling
-Final result of a
task for voting

-Sampling
(threshold-based
weighted sampling)
-Voting (majority
voting,m-first voting,
threshold-based
weighted voting)

FCFS (eager
scheduling)

-Reputation
(failure rate,
sabotage rate)
-Threshold
(acceptable
error rate)

-Penalty
(blacklist)

-Credibility-based
enhanced eager scheduling

Germain-Renaud et al. [3,4] Result of a
special task

Sampling
(threshold-based
sampling)

Not mentioned Threshold
(acceptable
error rate)

-Penalty
(blacklist)

-Three scenarios: Normal,
massive attack, subtle
attack
-Fault tolerant application
(Monte-Carlo simulations)

Du et al. [5] Result of a
special task
(Merkle tree
with one-way
hash function)

Sampling (simple
sampling–randomly
selected input)

Not mentioned Not mentioned Not mentioned -Merkle-tree based
commitment technique

Varrette et al. [6],
Krings et al. [7]

Final result of a
task

Sampling (simple
sampling,
Threshold-based
sampling)

Not mentioned Threshold
(acceptable
error rate)

Not mentioned -Result certification for
tasks with dependency
-Formalization of result
certification

Yang et al. [8] Result of a
special task
(R-beacon)

Sampling (simple
sampling)

Not mentioned Not mentioned Not mentioned -Insert R-beacon into a
significant computation
region
-R-beacon message initiates
result certification

Taufer et al. [9] Final result of a
task

-Voting (majority
voting)

Qos (preference-
homogeneous
HW/SW)

Non-reputation
(odd number)

Not mentioned -Homogeneous redundancy

Zhao et al. [10] -Result of a
special task for
sampling (quiz)
-Final result of a
task for voting

-Sampling (simple
sampling)
-Voting (majority
voting)

Reputation
(trust)

Reputation
(failure rate and
sabotage rate)

-Penalty
(decrease the
trust value, or
blacklist)
-Incentive
(increase the
trust value)

-Coupling result
certification with
reputation systems

Sonnek et al. [11] Final result of a
task

-Voting (majority
voting,
threshold-based
weighted voting)

Reputation
(reliability)

Reputation
(reliability)
Threshold (LOC:
likelihood of
correctness)

Not mentioned -Adaptive reputation-based
scheduling

Domingues et al. [12],
Kondo et al. [13]

Intermediate
result of a task
(checkpoint)

Voting (majority
voting)

Not mentioned Not mentioned Not mentioned -Long running applications
(climatedprediction.net,
climatechange projects)

Kim et al. [14] Final result of a
task

Voting (majority
voting)

-Reputation
(credibility,
result return
rate)
-Qos (deadline)

Not mentioned Not mentioned -Trust-based sabotage
tolerance for deadline tasks

Proposed mechanism -Result of a
special task for
sampling
-Final result of a
task for voting

-Sampling
(Threshold-based
sampling)
-Voting (majority
voting,
threshold-based
weighted voting)

Reputation
(volatility,
credibility,
volunteering
service time)

-Reputation
(failure rate,
sabotage rate,
volatility,
credibility)
-Threshold
(acceptable
error rate)

-Penalty
(exclusion in a
scheduling
procedure)

-Group-based result
certification
of members in the D′ volunteer group increases, the number of
completed tasks decreases. In addition, volunteer availability is
tightly related to performance. Cases 1 and 2 can complete more
tasks than cases 3 and 4.
In the case of majority voting, GARCM obtains more task results

than eager scheduling because it dynamically decides the number
of redundancies according to properties of volunteer groups, as
shown in Fig. 7(b). The A′ and B′ volunteer groups choose less
redundancy than the C ′ volunteer group. As a result, the A′ and
B′ volunteer groups are able to reduce replication overhead, so
they can execute more tasks. On the other hand, the C ′ volunteer
group needs a large number of redundancies tomeet the reliability
threshold. However, it can decrease its error rate.
In the case of spot-checking, GARCM completesmore tasks than

eager scheduling because it dynamically decides the spot-checking
rate according to the properties of the volunteer groups, as shown
in Fig. 8(b). However, if the A′ volunteer group is less than the C ′
volunteer group, as in Cases 2 and 3, the number of completed tasks
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(a) Total number of tasks with majority voting. (b) The number of redundancies in majority voting.

(c) Error rate in majority voting.

Fig. 7. Simulation results in group-based voting.
Table 2
Simulation environment.

Case A′ B′ C ′ D′ Total

Case 1

P. 84 (42%) 26 (13%) 70 (35%) 20 (10%) 200
αv 0.84 0.88 0.81 0.83 0.84
Θ 41 17 39 16 35 min
Cv 0.98 0.98 0.88 0.86 0.93

Case 2

P. 71 (35.5%) 31 (15.5%) 76 (38%) 22 (11%) 200
αv 0.87 0.89 0.80 0.82 0.84
Θ 41 17 39 16 34 min
Cv 0.98 0.98 0.84 0.85 0.91

Case 3

P. 76 (38%) 27 (13.5%) 80 (40%) 17 (8.5%) 200
αv 0.86 0.78 0.80 0.71 0.81
Θ 35 17 33 16 30 min
Cv 0.98 0.98 0.82 0.85 0.91

Case 4

P. 42 (21%) 59 (29.5%) 30 (15%) 69 (34.5%) 200
αv 0.80 0.70 0.78 0.69 0.73
Θ 28 12 25 13 24 min
Cv 0.98 0.98 0.89 0.89 0.94
becomes similar because the C ′ volunteer group has a high spot-
checking rate.

5. Conclusions

Result certification is important to guarantee reliable execution.
A dynamic schedulingmechanism for result certification is also es-
sential to overcome high overhead and performance degradation.
In this article, we proposed a new Group-based Adaptive Result
Certification Mechanism (GARCM). GARCM reflects the volatility,
failure, heterogeneous properties and reliability of volunteers in
scheduling and result certification procedures by means of volun-
teer groups. Volunteer groups are constructed according to volun-
teer properties such as availability, volunteering service time and
credibility. GARCM dynamically applies different scheduling and
result certification algorithms to each volunteer group.
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(a) Total number of tasks with spot-checking. (b) Spot-checking rate.

(c) Error rate in spot-checking.

Fig. 8. Simulation results in group-based spot-checking.
The simulation results showed that GARCM gains better
performance and reduces the overhead of result certification
while satisfying the desired credibility threshold. In particular,
GARCM completes more tasks than eager scheduling to which
result certification is applied result certification. GARCM reduces
the number of redundancies or the spot-checking rate more than
eager scheduling because it dynamically decides the number of
redundancies or spot-checking rate according to the properties
of each individual volunteer group. With regard to volunteer
groups, the evaluation results showed that the larger the number
of volunteers in the A′ and C ′ volunteer groups is, the larger the
number of completed tasks. Also, as the number of volunteers in
the B′ and D′ volunteer groups increases, the more the difference
between GARCM and eager scheduling.
We are currently studying how to couple result certification

with incentive scheduling in Desktop Grids. An incentive schedul-
ing is aimed at giving more rewards and benefit to eager, reliable
and trustworthy volunteers, and punishing volatile, selfish or ma-
licious volunteers. Thus, it encourages volunteers to donate their
resources eagerly and reliably. Incentive scheduling can use result
certification to evaluate volunteers.
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