
Al-Sakib Khan Pathan
International Islamic University Malaysia, Malaysia

Mukaddim Pathan
Australian National University, Australia

Hae Young Lee
Electronics and Telecommunications Research Institute, South Korea

Advancements in
Distributed Computing
and Internet
Technologies:
Trends and Issues

Advancements in distributed computing and Internet technologies: trends and
issues / Al-Sakib Khan Pathan, Mukaddim Pathan and Hae Young Lee, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book compiles recent research trends and practical issues in
the fields of distributed computing and Internet technologies, providing
advancements on emerging technologies that aim to support the effective design
and implementation of service-oriented networks, future Internet environments
and building management frameworks”-- Provided by publisher.
 ISBN 978-1-61350-110-8 (hardcover) -- ISBN 978-1-61350-111-5 (ebook) -- ISBN
978-1-61350-112-2 (print & perpetual access) 1. Electronic data processing--
Distributed processing. 2. Service-oriented architecture (Computer science)
3. Internet. I. Pathan, Al-Sakib Khan. II. Pathan, Mukaddim. III. Lee, Hae
Young, 1975-
 QA76.9.D5A3443 2012
 004.67’8--dc23
 2011013015

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Mike Killian
Production Editor: Sean Woznicki
Typesetters: Christen Croley
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

386

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 18

inTroDUCTion

A distributed computing system enables the
sharing, selection, and aggregation of distrib-
uted heterogeneous computational and storage
resources, which are under the control of differ-
ent sites or domains. The key applications of the

computational distributed systems is to provide
solutions to the complex scientific or engineer-
ing problems, such as weather forecasting, stock
portfolio management, medical diagnoses.

The configuration of a distributed system is
considered as decentralized if none of the partici-
pants in the system are more important than the
others, in case that one of the participants fails,
then it is neither more nor less harmful to the

Mustafizur Rahman
The University of Melbourne, Australia

Rajiv Ranjan
The University of New South Wales, Australia

Rajkumar Buyya
The University of Melbourne, Australia

Decentralization in
Distributed Systems:
Challenges, Technologies,

and Opportunities

aBsTraCT

In recent years, decentralization in distributed computing systems, such as Grids and Clouds has been
widely explored in order to improve system performance in terms of scalability and reliability. However,
the decentralized nature of the system also raises some serious challenges. This chapter discusses the
major challenges of designing and implementing decentralization in Grid and Cloud systems. It also
presents a survey of some existing decentralized distributed systems and technologies regarding how
these systems have addressed the challenges.

DOI: 10.4018/978-1-61350-110-8.ch018

387

Decentralization in Distributed Systems

system than caused by the failure of any other
participant in the system. Thus, in a Decentralized
distributed system, management services, such
as application scheduling, resource discovery
are distributed over the sites so that if one site is
failed, another site can take over its responsibility
autonomously. Moreover, decentralized systems
are highly scalable as they can seamlessly add
or remove the components or resource pool in
order to accommodate varying workload. On the
other hand, in a centralized distributed system,
the central servers play the role of scheduling
and resource discovery services. In Figure 1, we
present example application runtime scenarios
in case of both centralized and decentralized
distributed system.

Decentralization of distributed computing
systems based on Peer-to-Peer (P2P) network
model can certainly overcome the limitations of
centralized and hierarchical model in terms of
scalability, single point failure, autonomy, and
trust-worthiness. However, complete decentral-
ized nature of the system raises other serious
challenges in domains of application scheduling,
resource allocation, coordination, resource dis-

covery, security, trust, and reputation management
between participants.

In this chapter, we aim to identify the basic
challenges of decentralized distributed systems
and survey some existing decentralized distributed
systems and technologies along with a case study.
Specifically, we describe the basic functionalities
and important features of these systems and tech-
nologies, as well as compare them in the context
of addressing the challenges. Finally, we outline
some opportunities or future directions in this
research discipline.

ChaLLenGes of DeCenTraLiZeD
DisTriBUTeD sYsTems

scheduling

In centralized scheduling approach, all the system-
wide decision makings are coordinated by a central
controller. Centralized scheduler organization is
simple to implement, easy to deploy, and presents
few management hassles. However, this scheme

Figure 1. Application runtime environment in centralized and decentralized distributed systems: (a)
centralized system, (b) decentralized system

388

Decentralization in Distributed Systems

raises serious concerns when subjected to larger
system size.

The decentralized scheduler organization ne-
gates the limitations of centralized organization
with respect to fault-tolerance, scalability, and
autonomy (facilitating domain specific resource
allocation policies). This approach scales well for
both, a small scale resource sharing environment
(e.g. resource sharing under same administrative
domain) to a large scale environment (e.g. the
Internet). However, this approach raises serious
challenges in the domain of distributed information
management, enforcing system wide coordina-
tion, security, resource consumer authenticity,
and resource provider’s policy heterogeneity.
We can classify decentralized scheduling into
two categories.

non-Coordinated scheduling

In the non-coordinated scheduling scheme, ap-
plication schedulers perform scheduling related
activities independent of the other schedulers in

the system. Condor-G resource brokering system
performs non-coordinated or non-cooperative
scheduling by directly submitting jobs to the con-
dor pools without taking into account their load
and utilization status. This approach exacerbates
the load sharing and utilization problems of dis-
tributed resources since sub-optimal schedules are
likely to occur. Figure 2 shows the decentralized
non-coordinated scheduling approach in Tycoon
resource sharing system. Auctioneers advertise
the resource availability and configuration to the
discovery service. Client agents query the discov-
ery service to gather information about available
auctioneers in the system. As a result, both Client
agents end up bidding to the auctioneer n because
of lack of coordination among them.

Coordinated scheduling

Coordinated scheduling scheme negotiates re-
source conditions with the local site managers
in the system, if not, with the other application
level schedulers. Legion-Federation system co-

Figure 2. Decentralized non-coordinated scheduling in Tycoon

389

Decentralization in Distributed Systems

ordinates scheduling decision with other sites in
the distributed environment through job query
mechanism. A job query request (containing job
type and composition) is sent to k remote sites
for bidding. The scheduler of each remote site
then contacts its Local Resource Management
System LRMS) to obtain job completion time on
their local resources and sends this information
back to the initiator’s site. Finally, the site who
bids with the least projected job completion time
is selected for job scheduling.

objective function

Resources in a distributed system are dynamic in
nature and their states can change within small
interval of time. Therefore, we need scheduling
and resource allocation policies that can adapt to
these changing resource conditions. As a result,
the participants including resource providers and
resource consumers associate various objective
functions with respect to resource allocation and
scheduling processes. These objective functions
are formulated based on the policies and strategies
enforced by resource providers and consumers.
For example, a resource provider in a decentral-
ized distributed system can enforce pricing policy,
admission control policy, and domain specific
resource allocation strategy. Similarly, the resource
users or consumers can associate QoS-based utility
constraints to their applications and expect that
the constraints are satisfied within the acceptable
limits. We can distinguish the objective functions
into two categories.

system Centric

Based on the system centric mechanism, a de-
centralized distributed system defines relatively
simple objective functions. A system centric sched-
uler focuses on maximizing resource throughput
on the provider side, while minimizing overall
consumer’s application completion time.

User Centric

User centric scheduling mechanisms are market
driven and define objective functions based on
QoS parameters. From the resource providers’
perspective, these QoS parameters include profit,
reputation, security or combination of all, whereas
QoS parameters for users are cost, budget spent,
response time or combination of all.

Exact combination of QoS parameters is deter-
mined by the applied economic model. Some of
the commonly used economic models in resource
allocation include commodity market model,
tendering/contract-net model, auction model,
bid-based proportional resource sharing model,
bartering model, and monopoly model. In coop-
erative market model, such as bartered economy,
there is singleton objective function shared by
both consumer and provider, which is maximiz-
ing its bartering reputation. On the other hand, in
competitive market models, such as commodity
market, bid-based proportional sharing, auction,
resource consumer and provider usually have
different objective functions. Resource providers
define objective function with focus on maximiz-
ing profit, whereas consumers mainly focus on
minimizing cost and response time.

Coordination

The effectiveness of a decentralized distributed
system depends on the level of coordination and
cooperation among the participants. The partici-
pants in a decentralized environment are pools
of diverse peers or brokers, which have agreed to
co-operate for sharing and controlling resources
in order to enhance overall utility of the system.
Realizing such a co-operation among these dy-
namic and selfish participants requires robust
mechanism for coordination and negotiation
policies. In general, the process of coordinated
application scheduling and resource management
involves dynamic information exchange between
various schedulers and LRMSs in the system.

390

Decentralization in Distributed Systems

Negotiation among all the participants can be
done based on well-known agent coordination
mechanism called contract net protocol (Smith,
1988). Contract net partitions the coordination
space into two distinct domains including a
manager and a contractor. A resource broker in
a decentralized distributed system can adhere to
the role of a contractor that negotiates SLAs with
resource providers. Effectively, resource provider
works as a manager that exports its local resources
to the outside contractors and is responsible for
decision regarding admission control based on
negotiated Service Level Agreements (SLA).

However, distributed negotiation has sub-
stantial message overhead and it can worsen as
system scales to a large number of participants.
For the communication among the participants,
we distinguish between three different approaches.

• one-to-all broadcast.
• selective broadcast.
• one-to-one negotiation.

Communication protocols based on one-to-all
broadcast is very expensive in terms of number of
messages and network bandwidth usage. Similar
negotiation protocol has been proposed in the work
Legion-Federation for decentralized scheduling.
Therefore, Condor-Flock P2P system proposed
selective broadcast to the flocks currently indexed
by the Pastry routing table (Rowstron et al., 2001).
The SLA-based scheduling approach proposed
by Ranjan et al. (Ranjan et al., 2006) advocates
one-to-one negotiation among contractors and
managers.

Some approaches including Bellagio ad-
vocate coordinating resource activity among
decentralized participants based on centralized
coordinators. Figure 3 shows centralized coordi-
nation methodology applied by Bellagio system.
Resource agents register the resource configura-
tion with the Sword (Oppenheimer et al., 2005)
resource discovery service. Client agents query the
Sword to locate available resources in the system.

Once the resource lists are obtained, Client agents
bid for resources with the centralized auction
coordinator. The bid parameters include the sets
of resources desired, a time for which application
would be deployed on resources, and the amount
of virtual money clients are ready to spend.

security and Trust

The decentralized organization of distributed
systems raises serious challenges in the domains
of security and trust management. Implementing
a secure decentralized distributed system requires
solutions that can efficiently address the following
security issues:

• preserve the privacy of participants.
• ensure authenticity of the participants.
• provide robust authorization.
• route messages securely between distrib-

uted services.

privacy

The privacy of the participants can be ensured
through secret key-based symmetric cryptographic
algorithms, such as 3DES, RC4, etc. These secret
keys must be securely generated and distributed
in the system. Existing key management systems,
such as public key algorithms (including DH,
RSA, elliptic) and Kerberos (trusted third party)
can be utilized for this purpose.

authentication

Authentication of the participants can be achieved
through trust enforcement mechanisms including
(i) Public Key Infrastructure (X.509 certificates),
(ii) Kerberos (third party authentication), (iii)
distributed trust, and (iv) SSH.

Authentication based on X.509 certificates
requires a trusted Certifying Authority (CA) in the
system. A system can have a single CA, which is
trusted by all the participants. However, single CA

391

Decentralization in Distributed Systems

approach has limited scalability. An alternative to
this is to have multiple CAs combining together
to form a trust chain. In this case, a certificate
signed by any CA in the system has global validity.

Kerberos is a network authentication protocol.
It is designed to provide strong authentication
for client/server applications by using secret-key
cryptography. Kerberos based implementation
has significant shortcomings as it requires syn-
chronous communication with the ticket granting
server in order to setup communication between
a client and server. If the ticket granting server
goes offline or has a security breach then there is
no way the system can operate.

JXTA (Gong, 2001) provides a completely
decentralized X.509 based PKI. Each JXTA peer
is its own CA and issues a certificate for each
service it offers. Each of the CA certificate is
verified via the Poblano: “web of trust”, a dis-

tributed reputation management system. A similar
distributed trust mechanism is PeerReview (Dur-
schel, 2006). These distributed trust management
systems determine malicious participants through
behavioral auditing. An auditor node A checks if
it agrees with the past actions of an auditee node
B. In case of disagreement, A broadcasts an ac-
cusation of B. Interested third party nodes verify
evidence, and take punitive action against the
auditor or the auditee.

The SSH based authentication scheme is
comparatively easier to implement as it does not
require trusted third party certification. However,
it does not allow the creation of a dynamic trust
chain, and in case a participant’s private key is
compromised, it requires every public key holder
to be informed about this event. Unlike X.509 and
Kerberos implementation, SSH does not support

Figure 3. Centralized coordination in Bellagio

392

Decentralization in Distributed Systems

certificate translation mechanism (i.e. from X.509
to Kerberos or vice versa).

authorization

Authorization deals with the verification of an
action that a participant is allowed to undertake
after a successful authentication. Particularly in
Grids, site owners have the privilege to control
how their resources are shared among the par-
ticipants. The resource sharing policy takes into
account the participant’s identity and membership
to groups or virtual organizations. For instance,
Globus based Grid installation defines the access
control list using a Gridmap file.

secure message routing

Implementing secure and trusted message routing
in decentralized environment requires solution to
the following problems:

• secure generation and assignment of
nodeIds.

• securely maintaining the integrity of rout-
ing tables.

• secure message transmission between
peers.

Secure nodeId assignment ensures that an
attacker or a malicious peer cannot choose the
value of nodeIds that can give it membership of
the overlay. If the node assignment process is not
secure, then an attacker could sniff into the over-
lay with a chosen nodeId and get control over the
local objects, or influence all traffic to and from
the victim node. The nodeId assignment process is
secured by delegating this capability to a central,
trusted authority. Secure message forwarding in the
Internet can be achieved through secure transport
layer connections, such as TLS and SSL.

reLaTeD DeCenTraLiZeD
DisTriBUTeD sYsTems
anD TeChnoLoGies

Let us now look at some existing decentralized
distributed systems and technologies commonly
in practice. For each system or technology, we
describe the basic functionalities and important
features. Table 1 compares these systems and
technologies in the context of how do they ad-
dress the challenges of decentralized distributed
system discussed above.

Bellagio

Bellagio (Auyoung et al., 2004) is a market-based
resource allocation system for federated distrib-
uted computing infrastructure. In Bellagio, users
specify resources of interest in the form of com-
binatorial auction bids. Thereafter, a centralized
auctioneer allocates resources and decides pay-
ments for users. The Bellagio architecture consists
of resource discovery and resource market. For
resource discovery of heterogeneous resources,
Bellagio uses SWORD (Oppenheimer et al., 2005).
For resource market, Bellagio uses a centralized
auction system, in which users express resource
preferences using a bidding language, and a pe-
riodic auction allocates resources to users. A bid
for resource includes sets of resources desired,
processing duration, and the amount of virtual
currency which a user is willing to spend. The
centralized auctioneer clears the bid every hour.

Condorflock p2p

Butt et al. (Butt et al., 2003) present a scheme
for connecting existing Condor work pools using
P2P routing substrate Pastry (Rowstron et al.,
2001). Inherently, P2P substrate (overlay network)
aids in automating the resource discovery in the
Condor Flock Grid. Resource discovery in the
flock is facilitated through resource information
broadcast to the pools, whose ids appear in the

393

Decentralization in Distributed Systems

Pastry node’s routing table. The proposed P2P-
based overlay network facilitates only resource
discovery, while other decisions such as resource
sharing policy is controlled by the pool managers.
Core Condor LRMS has also been extended to
work with Globus (Foster et al., 1997), the new
version is called Condor-G resource broker, which
enables creation of global Grids and is designed to
run jobs across different administrative domains.

interGrid

InterGrid (Assuncao et al., 2008) provides a soft-
ware system that allows the creation of collabora-
tive execution environments for various scientific
applications on top of the physical infrastructure

provided by the participating Grids in the federa-
tion. The allocation of resources from multiple
Grids to fulfill the requirements of the execution
environments is enabled by peering arrangements
established between InterGrid Gateways (IGGs).
An IGG is aware of the terms of the peering among
the Grids connected to it. Thus, it can select the
suitable Grids that are able to provide the required
resources for a particular application. Moreover, it
can also send request to other IGGs for resource
provisioning and replies to requests from other
IGGs. Request redirection policies determine
which peering Grid is selected to process a request
and a price at which the processing is performed.

Table 1. Comparison of different decentralized distributed systems and technologies

System Name Type Organization Scheduling
Model

Objective Function Coordination
Model

Security
Model

Aneka Federation (Ranjan
et al., 2009)

P2P
Grid

Univers i ty of
Melbourne

Decentralized
coordinated

System centric Selective
broadcast

Distributed
trust

Bellagio
(Auyoung et al., 2004)

Grid University of Cal-
ifornia, San Diego

Centralized User centric, Bid-
based proportional
sharing

centralized SSH

CondorFlock
P2P (Butt et al., 2003)

P2P
Grid

Purdue University Decentralized
coordinated

System centric Selective
broadcast

PKI / Globus

InterGrid
(Assuncao et al., 2008)

Grid Univers i ty of
Melbourne

Decentralized
coordinated

User centric Selective
broadcast

PKI

Legion-Federation
(Weissman et al., 1996)

Grid University of Vir-
ginia

Decentralized
coordinated

System centric One-to-All
broadcast

Public-key
cryptogra-
phy based on
RSAREF 2.0

MOSIX-Fed
(Barak et al., 2005)

Grid Hebrew Univer-
sity of Jerusalem

Centralized System centric Centralized SSH

Sharp
(Fu et al., 2003)

P2P Duke University Decentralized
coordinated

User centric,
bartering

One-to-one ne-
gotiation

PKI

Trader-Federation (Frerot
et al., 2000)

Grid UFR Science et
Techniques

Decentralized
coordinated

User centric,
Commodity market

One-to-All
broadcast

N.A.

Tycoon
(Lai et al., 2004)

Grid HP Labs Decentralized
non-coordinated

User centric, Auction One-to-All
broadcast

PKI

Amazon EC2
(Amazon, 2010)

Cloud Amazon.com Centralized User centric Centralized PKI

Azure
(Nagy, 2010)

Cloud Microsoft Corpo-
ration

Centralized User centric Centralized TLS/SSL

Eucalyptus (Eucalyptus,
2009)

Cloud Eucalyptus Sys-
tems, Inc.

Centralized User centric Centralized SSH

394

Decentralization in Distributed Systems

Legion-federation

Weissman et al. (Weissman et al., 1996) devise
a federated model for distributed cooperative
resource management. The model proposes fed-
erated resource sharing using Legion LRMS. It
considers two levels of application schedulers in
the system namely, Local Site (LS) Scheduler and
Wide-Area (WA) scheduler. Every member site has
to instantiate these scheduling services. LSs are
responsible for managing and controlling the set
of resources assigned to them. WA scheduler has
two functional components including a Scheduling
Manager (SM), which is an interface to LS, and a
Grid Scheduler (GS), which connects to other SMs
in the federated system. The connection topology
between GSs is a fully connected graph structure.

mosix-fed

MOSIX is a cluster management system that ap-
plies process migration to enable a loosely coupled
Linux cluster to work like a shared memory parallel
computer. Recently, it has been extended to sup-
port a Grid of clusters to form a single cooperative
system (Barak et al., 2005). Basic feature of this
cooperative environment includes automatic load
balancing among participant clusters (owned by
different owners) while preserving the complete
autonomy. Proposed resource coupling scheme can
be applied to form a campus or an enterprise Grid.
MOSIX federation aims at hierarchical coupling
of cluster resources under same administrative
domain. Resource discovery in such an arrange-
ment is facilitated by hierarchical information
dissemination scheme that enables each node to
be aware of the latest system wide state.

sharp

Sharp (Fu et al., 2003) is a framework for secure
distributed resource management. In Sharp,
participant sites can trade their resources with
peering partners or contribute them to a peer fed-

eration according to the local site sharing policies.
Sharp framework relies on bartering economy as
the basis to exchange resources among various
resource domains. A cryptographically signed
object called Resource Tickets (RTs) is issued by
each participating site. These RTs are exchanged
between the participating sites for facilitating
coordinated resource management. The funda-
mental resource management software entities
in Sharp include site authority, service manager,
and agents. These entities connect to each other
based on a peer-to-peer network model.

Trader-federation

Frerot et al. (Frerot et al., 2000) present a scheme
called federation of distributed resource traders,
which couples various autonomous resources or
resource providers. A resource trader entity acts as
an intermediary between consumers and providers.
Every trader has local users, clients, and resources
who are members of the local resource domain.
Federation of traders enables the participants to
trade resources at both local and the Internet levels.
Various traders cooperate within the federation to
maximize a trading function. The trader presents
two interfaces, local interface for its local users
and resource providers, while remote interface
to other traders in the federation. The federation
works as a market place where various traders
can negotiate for QoS parameter (response time,
accuracy) requested by the local users.

Tycoon

Tycoon (Lai et al., 2004) is a distributed market-
based resource allocation system. Application
scheduling and resource allocation in Tycoon is
based on decentralized isolated auction mecha-
nism. Every resource owner in the system runs
its own auction for his local resources. In addi-
tion, auctions are held independently, thus clearly
lacking any coordination. Tycoon system relies on
centralized Service Location Services (SLS) for

395

Decentralization in Distributed Systems

indexing resource auctioneers’ information. Ap-
plication level super-schedulers contact the SLS
to gather information about various auctioneers in
the system. Once this information is available, the
super-schedulers (on behalf of users) issue bids
for different resources. In this setting, the super-
schedulers might end up bidding for small subset
of resources while leaving the rest under-utilized.

amazon eC2

Amazon Elastic Compute Cloud (EC2) (Amazon,
2010) is a web service that provides resizable
compute capacity in the cloud environment. It’s
simple web service interface that provides the com-
plete control of the leased computing resources
to run on Amazon’s computing environment.
Resource provisioning is achieved in Amazon
EC2 by utilizing three web services: Elastic Load
Balancer, CloudWatch and Auto Scaling. Elastic
Load Balancer is in charge of delivering incom-
ing connections across multiple Amazon EC2
instances automatically. It continuously monitors
the health conditions of instances, and re-route
traffic from faulty instances to faultless instances
within a single availability zone or across multiple
zones. Whereas, CloudWatch, is responsible for
monitoring cloud resources (i.e. Amazon EC2,
Elastic Load Balancer) in real-time and provides
information about the performance metrics related
to the Amazon EC2 instances, such as resource
utilization and network traffic.

azure

Microsoft Windows Azure Platform (Nagy, 2010)
is a cloud platform providing a wide range of
Internet services that can be consumed from both
on-premises environments and the Internet. It uses
a specialized operating system, called Windows
Azure, to run its Fabric Layer, which provisions
and manages computing and storage resources for
the applications running on top of Windows Azure.
Azure Fabric Controller is a redundancy tolerance

service designed for monitoring and maintaining
machines/resources to host the applications that
are created and stored in Windows Azure. Besides,
it is also in charge of resource provisioning by
supporting a declarative service model. Declara-
tive service specifications is appointed in every
application and the Fabric Controller looks through
Azure Fabric to match resources that meet required
demands of CPU, bandwidth, operating system
and redundancy tolerance.

eucalyptus

Eucalyptus Systems (Eucalyptus, 2009) is an open
source software infrastructure for implementing
public or private clouds on existing Enterprise IT
and service provider infrastructure. Enterprise Eu-
calyptus provides capabilities, such as self-service
provisioning, customized SLAs, cloud monitoring,
metering, and support for auto-scaling, as a highly
available cloud platform. It is composed of four
controllers (Cloud Controller, Cluster Control-
ler, Node Controller, and Storage Controller) to
control the virtualization environment in a manner
of centralized and hierarchical structure. These
controllers are used for managing the underlying
virtualized resources (servers, network, and stor-
age), monitoring and scheduling Virtual Machine
(VM) execution on specific nodes, hosting VMs,
and interfacing with various storage systems (i.e.
NFS, iSCSI).

Case sTUDY

aneka federation

Aneka Federation system logically connects topo-
logically and administratively distributed Aneka
Enterprise Grids as part of a single cooperative
system. It uses a Distributed Hash Table (DHT),
such as Pastry, Chord based Peer-to-Peer (P2P)
network model for discovering and coordinating
the provisioning of distributed resources in Aneka

396

Decentralization in Distributed Systems

Grids. It also employs a novel resource provi-
sioning technique that assigns the best possible
resource sets for the execution of applications,
based on their current utilization and availability
in the system.

Aneka Federation utilizes the Grid-Federation
model in regards to distributed resource organiza-
tion, sharing and Grid networking. Grid-Feder-
ation is defined as a large scale resource sharing
system that consists of a coordinated federation
of distributed Aneka Enterprise Grids. Figure
4 shows the architecture and layered design of
Aneka Federation resource sharing environment,
consisting of Internet-wide distributed parallel
resources in different Aneka Enterprise Grids.
Every contributing site or Grid maintains its own
Aneka Coordinator service and all these sites are
connected through a DHT based P2P network
(see Figure 4(a)).

scheduling

The application scheduling and resource discovery
in Aneka-Federation is facilitated by a special-
ized Grid Resource Management System known
as Aneka Coordinator (AC). AC is composed of
three software entities: Grid Resource Manager
(GRM), LRMS and Grid Peer. The GRM com-
ponent of AC exports a Grid site to the federation
and is responsible for coordinating federation wide
application scheduling and resource allocation.
GRM is also responsible for scheduling locally
submitted jobs in the federation using LRMS.
Grid peer implements a DHT based P2P over-
lay (see Figure 4(b)) for enabling decentralized
and distributed resource discovery supporting
resources status lookups and updates across the
federation. It also enables decentralized inter-AC
collaboration for optimizing load-balancing and
distributed resource provisioning.

Grid Peer accepts two types of objects from
GAM regarding decentralized and coordinated
scheduling: Claim and Ticket. A Claim object is

Figure 4. Aneka Federation: (a) architecture, (b) layered design

397

Decentralization in Distributed Systems

sent by GAM to DHT overlay for locating the
resources that match with user’s application re-
quirements and a Ticket is an update object sent
by a Grid site, mentioning about the underlying
resource conditions. These objects are also called
coordination objects as they encapsulate the co-
ordination logic in Aneka Federation.

Coordination

Aneka Federation uses a DHT (such as Chord,
Pastry) based P2P overlay for handling resource
discovery and scheduling coordination. The em-
ployment of DHT gives the system the ability to
perform deterministic discovery of resources and
produce controllable number of messages (by us-
ing selective broadcast approach) in comparison
to using other One-to-All broadcast techniques
such as JXTA.

Generally, resources hosted by a Grid site are
identified by more than one attribute; thereby a
Claim or a Ticket object is always multi-dimen-
sional in nature. In order to support multi-dimen-
sional data indexing (processor type, OS type,
CPU speed) over DHT overlay, Aneka Federation
leverages a spatial indexing technique, which is a
variant of MX-CIF Quad tree. The indexing tech-
nique builds a multi-dimensional attribute space
based on the Grid resource attributes, where each
attribute represents a single dimension.

objective function

The main objective function employed in Aneka
federation is to increase system’s efficiency by
balancing the load across the Grid resources in
the federation, while minimizing overall user’s
application completion time by avoiding resource
contention.

The load balancing decision is based on the
principle that it should not lead to over-provision-
ing of resources at any Grid site. This mechanism
leads to coordinated load-balancing across Aneka
Federation and aids in achieving system-wide ob-

jective function, while at the same time preserving
the autonomy of the participating Aneka Enterprise
Grids. The process of coordinated load balancing
is facilitated by implementing the P2P coordina-
tion space that takes the scheduling decisions.

security

Aneka Federation uses distributed trust mecha-
nism to ensure secured resource management
across the federation. It utilizes a reputation
based scheduling technique implemented by
the coordination space in order to prune out the
malicious and unwanted users from the system.
Furthermore, the Aneka Container component of
AC provides the base infrastructure that consists
of services for persistence and security (authoriza-
tion, authentication, and auditing).

ConCLUsion

In recent years, executing various scientific and
business workflow applications in distributed
systems (Grids and Clouds) has become a common
practice. The inherent complexity in workflows
requires an execution environment that addresses
issues, such as scalability, reliability, user support,
and system openness. However, the traditional
centralized system for managing these workflows
cannot satisfy these requirements. Thus, we can
leverage the decentralized systems and technolo-
gies to achieve a better solution, given the nature
of application environment.

Realizing an efficient, scalable, and robust
Relational Database Management System (RD-
BMS) based on decentralized Grid and Cloud
systems is an interesting future research problem.
Fundamental to decentralized RDBMS is the de-
velopment of distributed algorithms for: (i) query
processing; (ii) data consistency, integrity; and (iii)
transaction atomicity, durability, and isolation.
First step in designing a decentralized RDBMS
is to partition the relational tuple space across a

398

Decentralization in Distributed Systems

set of distributed storage resources in the system.
The data partition strategy should be such that the
query workload is uniformly distributed while
efficiently utilizing the resources computational
and network bandwidth capability.

Moreover, research in these challenging do-
mains of decentralized workflow management
and RDMS is still in early stage. We believe that
applying decentralized technologies for efficient
and reliable management of workflows and storage
will be an area of great interest in the coming years.

referenCes

Amazon. (2008). Elastic compute cloud. Retrieved
November 15, 2010, from http:// www.amazon.
com/ ec2

Assuncao, M. D., Venugopal, S., & Buyya, R.
(2008, June). Intergrid: A case for internetworking
islands of grids. Concurrency and Computation,
20(8), 997–1024. doi:10.1002/cpe.1249

Auyoung, A., Chun, B., Snoeren, A., & Vahdat, A.
(2004, October). Resource allocation in federated
distributed computing infrastructures. In Proceed-
ings of the 1st Workshop on Operating System
and Architectural Support for the On-demand IT
Infrastructure, Boston, USA.

Barak, A., Shiloh, A., & Amar, L. (2005, May). An
organizational grid of federated mosix clusters. In
Proceedings of the 5th IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGRID), Cardiff, UK.

Butt, A. R., Zhang, R., & Hu, Y. C. (2003). A
self-organizing flock of condors. In Proceedings
of the ACM/IEEE Conference on Supercomput-
ing, CA, USA.

Durschel, P. (2006, June). The renaissance of de-
centralized systems. Keynote talk at the 15th IEEE
International Symposium on High Performance
Distributed Computing, Paris, France.

Eucalyptus. (2009, August). Open-source cloud
computing infrastructure - An overview. Retrieved
from http:// www.eucalyptus.com/ whitepapers

Foster, I., & Kesselman, C. (1997). Globus: A
metacomputing infrastructure toolkit. The Inter-
national Journal of Supercomputer Applications,
11(2), 15–128.

Frerot, C. D., Lacroix, M., & Guyennet, H. (2000,
August). Federation of resource traders in objects-
oriented distributed systems. In Proceedings of the
International Conference on Parallel Computing
in Electrical Engineering, Quebec, Canada.

Fu, Y., Chase, J., Chun, B., Schwab, S., & Vahdat,
A. (2003). SHARP: An architecture for secure
resource peering. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles,
NY, USA.

Gong, L. (2001). JXTA: A network programming
environment. IEEE Internet Computing, 5(3),
88–95. doi:10.1109/4236.935182

Lai, K., Huberman, B. A., & Fine, L. (2004).
Tycoon: A distributed market-based resource al-
location system. Technical Report. USA: HP Labs.

Nagy, S. (2010). The azure fabric controller.
Retrieved November 15, 2010, from http://azure.
snagy.name/blog/?p=89

Oppenheimer, D., Albrecht, J., Vahdat, A., &
Patterson, D. (2008). Design and implementation
trade-offs for wide-area resource discovery. ACM
Transactions on Internet Technology, 8(4), 18.

Ranjan, R., & Buyya, R. (2009, July). Decentral-
ized overlay for federation of enterprise clouds
. In Li, K. C. (Eds.), Handbook of research on
scalable computing technologies. Hershey, PA:
IGI Global.

399

Decentralization in Distributed Systems

Ranjan, R., Harwood, A., & Buyya, R. (2006).
SLA-based coordinated superscheduling scheme
for computational grids. In Proceedings of the
8th IEEE International Conference on Cluster
Computing, Barcelona, Spain.

Rowstron, A., & Druschel, P. (2001). Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms, Heidelberg, Germany.

Smith, R. G. (1988). The contract net protocol:
High-level communication and control in a dis-
tributed problem solver . In Lenat, D. B. (Ed.),
Distributed artificial intelligence (pp. 357–366).
San Francisco, CA: Morgan Kaufman Publishers.

Weissman, J. B., & Grimshaw, A. (1996). Feder-
ated model for scheduling in wide-area systems.
In Proceedings of the 5th IEEE International
Symposium on High Performance Distributed
Computing, NY, USA.

keY Terms anD DefiniTions

Aneka Federation: The Aneka Federation
integrates numerous small scale Aneka Enterprise
Grid services and nodes that are distributed over
multiple control and enterprise domains as parts of
a single coordinated resource leasing abstraction.

Cloud Computing: It is a market-oriented
distributed computing paradigm consisting of
a collection of inter-connected and virtualized
computers that are dynamically provisioned and
presented as one or more unified computing
resources based on service-level agreements es-
tablished through negotiation between the service
provider and consumers.

Coordination: The effectiveness of a distrib-
uted computing system often depends on the level

of coordination among the distributed components
of the system. Lack of coordination among the
components may result in communication over-
head that eventually degrades the performance
of the system.

Decentralization: A distributed system con-
figuration is considered to be decentralized if
none of the components in the system are more
important than the others, in case that one of the
component fails, then it is neither more nor less
harmful to the system than caused by the failure
of any other component in the system.

Distributed Systems: A distributed system
consists of a collection of autonomous computers
that are connected and communicated through
computer network and distribution middleware,
which enable computers to coordinate their ac-
tivities and share resources in the system, so that
users perceive the system as an integrated single
computing facility.

Grid Computing: Grid computing enables the
sharing, selection, and aggregation of geographi-
cally distributed heterogeneous computational and
storage resources, which are under the control of
different sites or domains.

P2P Computing: Peer-to-Peer (P2P) comput-
ing is a distributed application architecture that
distributes the tasks or workloads among the avail-
able peers/nodes in the network, where each peer
is equally privileged and collaborate with others.
The term, P2P implies that either peer can initiate
a session and has equal responsibility.

Scheduling: In a distributed computing sys-
tem, scheduling is a process of finding the efficient
mapping of tasks in an application to the suitable
resources in the system so that the execution can
be completed with the satisfaction of objective
functions, such as execution time minimization
as specified by the users.

