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Summary

Computational demand in data centers is increasing because of the growing popularity of Cloud

applications. However, data centers are becoming unsustainable in terms of power consumption

and growing energy costs so Cloud providers have to face the major challenge of placing them

on a more scalable curve. Also, Cloud services are provided under strict Service Level Agreement

conditions, so trade-offs between energy and performance have to be taken into account. Tech-

niques as Dynamic Voltage and Frequency Scaling (DVFS) and consolidation are commonly used

to reduce the energy consumption in data centers, although they are applied independently and

their effects on Quality of Service are not always considered. Thus, understanding the relation-

ship between power, DVFS, consolidation, and performance is crucial to enable energy-efficient

management at the data center level. In this work, we propose a DVFS policy that reduces power

consumption while preventing performance degradation, and a DVFS-aware consolidation policy

that optimizes consumption, considering the DVFS configuration that would be necessary when

mapping Virtual Machines to maintain Quality of Service. We have performed an extensive evalu-

ation on the CloudSim toolkit using real Cloud traces and an accurate power model based on data

gathered from real servers. Our results demonstrate that including DVFS awareness in workload

management provides substantial energy savings of up to 41.62% for scenarios under dynamic

workload conditions. These outcomes outperforms previous approaches, that do not consider

integrated use of DVFS and consolidation strategies.
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1 INTRODUCTION

The trend towards Cloud computing has lead to the proliferation of

data centers because they are the infrastructure that provides this

new paradigm of computing and storage. Reference companies such as

Amazon,1 Google,2 Microsoft,3 and Apple4 have chosen this computa-

tional model where information is stored in the Internet Cloud offering

services more quickly and efficiently to the user. Cloud market oppor-

tunities in 2013 were supposed to achieve up to $150 billion,5 but the

rising price of energy had an impact on the costs of Cloud infrastruc-

tures, increasing the Total Cost of Ownership and reducing the Return

on Investment.

Nowadays, data centers consume about 2% of the worldwide energy

production,6 originating more than 43 million tons of CO2 per year.7

Also, the proliferation of urban data centers is responsible for the

increasing power demand of up to 70% in metropolitan areas, where

the power density is becoming too high for the power grid.8 In 2 or 3

years, the 95% of urban data centers will experience partial or total out-

ages incurring in annual costs of about US$2 million per infrastructure.

The 28% of these service outages are expected to be due to exceeding

the maximum capacity of the grid.9

Besides the economical impact, the heat and the carbon footprint

generated by cooling systems are dramatically increasing and they are

expected to overtake the emissions of the airline industry by 2020.10

The cooling infrastructure is needed to ensure that IT operates within

a safe range of temperatures, ensuring reliability. The energy efficiency

of novel cooling technologies, as water-based cooling, heat reusing,

and free cooling approaches outperform traditional Computer Room

Air Conditioning units. However, the implantation rate of these new

techniques is still low for typical data centers.
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However, the main contributor to the energy consumption in a data

center is the IT infrastructure, which consists of servers and other

IT equipment. The IT power in the data center is dominated by the

power consumption of the enterprise servers, representing up to 60%

of the overall data center consumption.7 The power usage of an enter-

prise server can be divided into dynamic and static contributions.

Dynamic power depends on the switching transistors in electronic

devices during workload execution. Static consumption associated to

the power dissipation of powered-on servers represents around 70%

and is strongly correlated with temperature because of the leakage

currents that increase as technology scales down.

The Cloud helps improving energy efficiency, reducing the carbon

footprint per executed task and diminishing CO2 emissions11 by

increasing data centers overall utilization. The main reason is that, in

this computational model, the computing resources are shared among

users and applications so, less powered-on servers are needed, which

means less static consumption. In this way, smaller facilities are able

to consolidate higher incoming workloads, thus reducing the comput-

ing and cooling energy requirements. Cloud computing provided a 17%

reduction in energy consumption by 2011 according to the Schneider

Electric’s report on virtualization and Cloud computing efficiency.12

To meet the growing demand for their services and ensure minimal

costs, Cloud providers need to implement an energy-efficient manage-

ment of physical resources. Therefore, optimization approaches that

rely on accurate power models and optimize the configuration of server

parameters (voltage and working frequency, workload assignment, etc.)

can be devised. Furthermore, as many applications expect services to

be delivered as per Service Level Agreement (SLA), power consumption

in data centers may be minimized without violating these requirements

whenever it is feasible.

From the application-framework viewpoint, Cloud workloads

present additional restrictions as 24/7 availability, and SLA constraints

among others. In this computation paradigm, workloads hardly use

100% of CPU resources, and their execution time is strongly con-

strained by contracts between Cloud providers and clients. These

restrictions have to be taken into account when minimizing energy

consumption as they impose additional boundaries to efficiency

optimization strategies. Users’ Quality of Experience would be deter-

mined by these constraints, and it would be impacted by performance

degradation.

Also, Cloud scenarios present workloads that vary significantly over

time. This fluctuation hinders the optimal allocation of resources, that

requires a trade-off between consolidation and performance. Work-

load variation impacts on the performance of 2 of the main strategies

for energy-efficiency in Cloud data centers: Dynamic Voltage and Fre-

quency Scaling (DVFS) and Consolidation.

Dynamic Voltage and Frequency Scaling strategies modify frequency

according to the variations on the utilization performed by dynamic

workload. These policies help to dynamically reduce the consumption

of resources as dynamic power is frequency dependent. Dynamic Volt-

age and Frequency Scaling has been traditionally applied to decrease

the power consumption of underutilized resources as it may incur

on SLA violations. On the other hand, consolidation policies decrease

significantly the static consumption by reducing the number of active

servers, increasing their utilization. Dynamic workload scenarios would

require policies to adapt the operating server set to the workload

needs during runtime in order to minimize performance degradation

because of overprovisioning. However, both strategies are applied inde-

pendently, regardless the effects that consolidation have on DVFS and

vice versa. Therefore, the implementation of DVFS-aware consolida-

tion policies has the potential to optimize the energy consumption of

highly variable workloads in Cloud data centers.

The key contributions of our work are (1) a DVFS policy that

takes into account the trade-offs between energy consumption and

performance degradation; (2) a novel consolidation algorithm that is

aware of the frequency that would be necessary when allocating a

Cloud workload in order to maintain Quality of Service (QoS). Our

frequency-aware consolidation strategy reduces the energy consump-

tion of the data center, making use of DVFS to reduce the dynamic

power consumption of servers, also ensuring SLA. The algorithm is light

and offers an elastic scale-out under varying demand of resources.

The rest of the paper is organized as follows: Section 2 gives fur-

ther information on the related work on this topic. The proposed

DVFS policy that considers both energy consumption and performance

degradation is presented in Section 3. This section also provides our

Frequency-Aware Optimization strategy for the energy optimization

of data centers. The simulation configuration is detailed in Section 4.

In Section 5, we describe profusely the performance evaluation and

the experimental results. Finally, Section 6 concludes the work with

future directions.

2 RELATED WORK

Recently, there has been a growing interest in developing techniques to

provide power management for servers operating in a Cloud. The com-

plexity of the power management and workload allocation in servers

has been described by Gandhi et al13 and Rafique et al,14 where the

authors show that the optimal power allocation is non-obvious, and,

in fact, depends on many factors such as the power-to-frequency rela-

tionship in processors, or the arrival rate of jobs. Thus, it is critical to

understand quantitatively the relationship between power consump-

tion and DVFS at the system level to optimize the use of the deployed

Cloud services.

Dynamic Voltage and Frequency Scaling is by far the most frequent

technique at the architectural-level as well as one of the currently

most efficient methods to achieve energy savings. This technique scales

power according to the workload in a system by reducing both oper-

ating voltage and frequency. Reducing the operating frequency and

voltage slows the switching activity achieving energy savings but also

decreasing the system performance. Dynamic Voltage and Frequency

Scaling implementation on CPU results in an almost linear relation-

ship between power and frequency, taking into account that the set of

states of frequency and voltage of the CPU is limited. Only by applying

this technique on a server CPU, up to 34% energy savings in dynamic

consumption can be reached as presented in.15

Dynamic Voltage and Frequency Scaling has been mainly applied

to enhance energy efficient scheduling on idle servers, or those

performing under light workload conditions,16 and during the exe-

cution of noncritical tasks.17 However, a recent research shows that
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DVFS can be also used to meet deadlines in mixed-criticality systems.18

Furthermore, DVFS-based scheduling research on multiprocessor sys-

tems shows promising results. Rizvandi et al19 achieved considerable

energy savings by applying this technique on up to 32-processor sys-

tems for High-Performance Computing workload. However, the effects

of DVFS in loaded servers have not been analyzed yet for Cloud sce-

narios. The Quality of Experience offered to the user that depends

on the SLA contracted to Cloud providers could be violated under

certain frequency-voltage conditions. Dynamic Voltage and Frequency

Scaling-aware approaches could help to reduce the energy consump-

tion of Cloud facilities but new algorithms have to be devised for large

scale data center infrastructures also taking into account the SLA con-

siderations of Cloud workloads.

On the other hand, many of the recent research works have focused

on reducing power consumption in cluster systems by power-aware

Virtual Machine (VM) consolidation techniques, as they help to

increase resource utilization in virtualized data centers. Consolidation

uses virtualization to share resources, allowing multiple instances of

operating systems to run concurrently on a single physical node. Virtu-

alization and consolidation increase hardware utilization (up to 80%20)

thus improving resource efficiency.

The resource demand variability of Cloud workload is a critical factor

in the consolidation problem as the performance degradation bound-

ary has to be considered for both migrating VMs and reducing the

active server set.21 Balancing the resource utilization of servers during

consolidation was performed by Calheiros et al22 to minimize power

consumption and resource wastage. In the research proposed by Her-

menier et al,23 their consolidation manager reduces the VM migration

overhead. Also, there exist interesting works that focuses on model-

ing the energy consumption of the migration process as the research

proposed by Haikun et al24 and De Maio et al.25

However, DVFS-Aware consolidation techniques that maintain QoS

in data centers have not been fulfilled yet. Although some combined

application of DVFS and consolidation methods for Cloud environ-

ments can be found, no one of them are considering performance

degradation because of VM migration or resource over-provisioning. In

the research presented by Wang et al,26 the consolidation is performed

regardless the frequency impact, and the DVFS is applied separately.

The approach presented by Petrucci et al27 shows the dependence of

power with frequency but the algorithm does not scale for large data

centers, and SLA violations are not taken into account.

Our work provides a novel DVFS-aware consolidation algorithm

that helps to reduce the energy consumption of data centers under

dynamic workload conditions. The proposed strategy considers the

trade-offs between energy consumption and performance degradation

thus maintaining QoS. The work presented in this paper outperforms

previous contributions by allowing the optimization of Cloud data cen-

ters from a proactive perspective in terms of energy consumption and

ensuring the user experience of Cloud-based services.

3 FREQUENCY-AWARE VIRTUAL MACHINE
CONSOLIDATION

The major challenge that we face in this work is to reduce the energy

consumption of the IT infrastructure of data centers, while maintain-

ing QoS, and under dynamic workload conditions. In our previous

work,28 we derived a complete accurate model to calculate the total

energy consumption of a server Ehost(m, k) in kW·h that can be seen in

Equation 1:

Ehost(m, k) = Phost(m, k) · Δt = (Pdyn(m, k) + Pstat(m)) · Δt (1)

T = {t1, … , ti, … , tT} (2)

Δt = ti+1 − ti (3)

Pdyn(m, k) = 𝛼(m) · V2
DD(m, k) · fop(m, k) · ucpu(m) (4)

Pstat(m) = 𝛽(m) · T2
mem(m) + 𝛾(m) · FS3(m) (5)

where Δt is the time along which the energy is calculated. In this paper,

we assume a discrete set of times T in which the algorithm is evalu-

ated in order to optimize the power performance of the system. We

define each time ti as the particular instant in which the system evalu-

ates an incoming batch of workload. Our proposed model estimates the

instantaneous electric power of a server in ti so, the energy is computed

for the time interval Δt between 2 workload evaluations, considering

that the power is stable in this time period. For practical reasons, we

have selected Δt to be 300s in our experiments, which is a realistic

assumption for our setup.

Phost(m, k), Pdyn(m, k) and Pstat(m) represent total, dynamic, and

static contributions of the power consumption in Watts of the phys-

ical machine m operating in a specific k DVFS mode. 𝛼(m), 𝛽(m) and

𝛾(m) define the technological constants of the server in the range of X,

X·10− 3 and X·10− 11.

Our proposed model consists of 5 different variables: ucpu(m) is the

averaged CPU percentage utilization of the specific server m and is

proportional to the number of CPU cycles defined in Millions of Instruc-

tions Per Second (MIPS) in the range [0,1]. VDD is the CPU supply

voltage, and fop is the operating frequency in GHz. Tmem defines the

averaged temperature of the main memory in Kelvin, and FS represents

the averaged fan speed in RPM. Depending on the target architec-

ture, some factors might have higher impact than others. This model

has been validated for Intel architectures achieving accuracy results of

about 95%.

Our model allows to obtain power estimations during run-time facil-

itating the integration of proactive strategies in real scenarios. Power

consumption is measured with a current clamp, so we can validate our

approach comparing our estimations with real values, obtaining valida-

tion errors ranging from 4.22% to 4.94%. perf monitoring tool is used

to collect the values acquired by different hardware counters in order

to monitor different parameters of the CPU and the memory. ucpu(m)

has been measured by monitoring the execution of the virtual machines

with the ps aux Linux command. cpufreq-utils Linux package is used to

monitor and modify fop and VDD according to the DVFS states dur-

ing workload execution. Finally, Tmem and FS are collected via Intelligent

Platform Management Interface.

As shown in Equation 4, the energy consumption due to the dynamic

power consumption Pdyn(m, k) depends on the workload profile exe-

cuted in the server. So, the lower the ucpu(m), the lower the dynamic
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energy contribution. On the other hand, the static consumption rep-

resents the energy consumed because of power dissipation of a

powered-on server, even if it is idle. This energy represents around

70% of the total server consumption. In this context, we can see some

observations about the dynamic consolidation problem:

• DVFS vs SLA. Dynamic Voltage and Frequency Scaling can be used to

achieve power savings because reducing the frequency and voltage

of the CPU (fop(m, k) and VDD(m, k)) slows its switching activity. How-

ever, it also impacts on the performance of the system by extending

tasks duration (t), which can lead to the appearance of SLA violations

and to the increase of energy consumption.

• Underloaded servers. If the workload is spread over a larger num-

ber of servers, the CPU utilization in each server will be lower, so

the dynamic power contribution in each server will be also lower. As

ucpu is reduced, fop can be scaled thus decreasing the power contribu-

tion due to CPU frequency. However, the global energy consumption

will be increased disproportionally because of the impact of static

consumption of a higher number of servers.

• Overloaded servers. On the other hand, if the incoming workload

is concentrated in a smaller set of servers, even though the static

consumption is reduced, the QoS may be affected. This situation is

intensified because of the dynamic variation of workload and, if the

maximum server capacity is exceeded during peak loads, it would

lead to performance degradation. To avoid overloaded servers, 1 or

more VMs can be migrated from 1 server to another. However, VM

migration has associated costs in terms of energy consumption and

time, which could lead to SLA violations.

In this paper, we propose a strategy to allow the energy opti-

mization of a Cloud under SLA constraints. As opposed to previous

approaches, our work offers a DVFS policy that considers the trade-offs

between energy consumption and performance degradation explained

in Section 3.1. Thus, frequency is managed according to the available

states depending on the server architecture while ensuring QoS. On the

other hand, in Section 3.2, we provide an energy-aware dynamic place-

ment algorithm that considers the frequency configuration according

to the allocation of VMs. Finally, in Section 3.3, we use both strate-

gies combined to proactively optimize a Cloud under dynamic workload

conditions.

3.1 Dynamic Voltage and Frequency

Scaling-Performance management

Dynamic Voltage and Frequency Scaling scales the power of the sys-

tem varying both CPU frequency and voltage. Reducing the operating

frequency and voltage slows the switching activity to achieve energy

savings; however, it also impacts negatively on the performance of

the system.

The CPU performance of a physical machine m is characterized by

the maximum MIPS that can be provided by its CPU (MIPSMAX(m)) at

its maximum frequency (fMAX(m)). Moreover, the real available cycles

offered by the system (MIPSavailable(m, k)) depend on the current oper-

ating frequency of the CPU (fop(m,k)). As we present in Equation 6,

fop(m,k) can only take a value from a specific set of valid frequencies

where k represents the operating DVFS mode. It is important to note

that not all frequencies from 0 to fMAX(m) are available, as the set of

states of frequency and voltage of the CPU is limited, and it may be dif-

ferent depending on the architecture of the physical machine m. We

define the available CPU utilization percentage ucpuavailable
(m, k) as the

maximum CPU utilization that could be used by the workload without

performance degradation. We present the relationship between these

parameters in Equation 7.

fop(m, k) ∈ {f1(m), f2(m), · · · , fk(m), · · · , fMAX(m)} (6)

MIPSavailable(m, k) =
fop(m, k)
fMAX(m)

· MIPSMAX(m) (7)

ucpuavailable
(m, k) =

MIPSavailable(m, k)
MIPSMAX(m)

=
fop(m, k)
fMAX(m)

(8)

In order to motivate these metrics, we provide the following case of

use for the Fujitsu RX300 S6 server. The maximum frequency for this

type of physical machine is fMAX(Fujitsu) = 2.4GHz, so the maximum

number of instructions per second is MIPSMAX(Fujitsu) = 2400 · CPI,

where CPI defines the number of cycles per required per instruction.

One of the available operating frequencies for this server is fop(Fujitsu,

1) = f1(Fujitsu) = 1.73GHz. Assuming that the server is operating at

1.73GHz, MIPSavailable(Fujitsu, 1) = 1.73/2.4 · 2400 · CPI = 1730 · CPI,

and according to Equation 7, the available CPU utilization percentage

takes the value ucpuavailable
(Fujitsu,1) = 0.72. Thus, if the utilization of the

Fujitsu server, running at 1.73GHz, exceeds the 72% of its total capac-

ity, the required number of instructions to be executed will be higher

than the available MIPS than can be provided, provoking a delay. On the

other hand, when the utilization is kept below this threshold, no perfor-

mance degradation occurs because of DVFS. These quality and perfor-

mance metrics will be considered by the proposed energy optimization

algorithm, so that they are not degraded (as it will be confirmed by the

experimental results).

Our proposed DVFS management policy (DVFS-perf), presented in

Algorithm 1 takes into account the previous relationships in order

to improve energy efficiency, avoiding performance degradation. As

inputs, we consider the complete set of hosts (hostList), and the set of

valid frequencies (frequenciesList). For each host, the current value of

CPU utilization is acquired in step 4. This variable, which depends on

the workload that is already hosted and running in the server, is moni-

tored during runtime by using calls to the system utility (eg, Linux top).
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Then, ucpuavailable
(m, k) (availableUtilization) is calculated for the different

frequencies in frequenciesList in steps 5 to 9. The algorithm selects the

minimum frequency that offers a suitable ucpuavailable
(m, k) value that is

greater or equal to the current utilization in the host in step 7. Finally, the

DVFS configuration for the entire set of hosts is provided by frequency-

Configuration.

As dynamic power is reduced with frequency, our algorithm sets the

operating frequency of each host to the lowest available value that pro-

vides sufficient CPU resources according to Equation (7). This ensures

that the server offers sufficient MIPS based on the amount demanded

by the allocated workload satisfying QoS.

We motivate these metrics by providing a case of use based on a

Fujitsu RX300 S6 server, whose maxFrequency is 2.4GHz. The operat-

ing frequencies set (frequenciesList) in GHz is fop(Fujitsu, k) = {1.73, 1.86,

2.13, 2.26, 2.39, 2.40}. Our aim is to find the best frequencyConfigura-

tion for a current utilization of the server of 80%. First, we calculate the

availableUtilization for the minimum frequency according to Equation 7

obtaining ucpuavailable
(Fujitsu,1) = 1.73∕2.4 = 0.721. As 72% is lower than

80%, this frequency is discarded so the algorithm check the next one

in an increasing order. ucpuavailable
(Fujitsu,2) = 1.86∕2.4 = 0.775 is also

lower so the next frequency is evaluated. For fop(Fujitsu) = 2.13GHz, we

calculate ucpuavailable
(Fujitsu,3) = 2.13∕2.4 = 0.887 obtaining an avail-

able CPU utilization of 88.7%, that is higher than the 80% required by

the workload allocated in it. Thus, our algorithm sets the frequency

of the Fujitsu server running at 80% to 2.13GHz, as it is the mini-

mum frequency that allows running the workload without performance

degradation because of DVFS.

This policy allows servers to execute the workload in a more efficient

way in terms of energy as frequency is scaled depending on the CPU

requirements of the workload, while maintaining QoS.

3.2 Frequency-aware dynamic consolidation

As an alternative to previous approaches, in this research, we provide

an energy-aware consolidation strategy that considers the frequency

configuration according to the allocation of VMs. We use this approach

to proactively optimize a Cloud under dynamic workload conditions.

3.2.1 Dynamic consolidation outlook.

In this context, the dynamic consolidation problem can be split into

4 different phases, as proposed by Beloglazov et al.29 Each phase

considers (i) detection of overloaded and (ii) underloaded hosts, (iii)

selection of VMs to be migrated from these hosts, and (iv) VM place-

ment after migrations, respectively. Their research also present dif-

ferent algorithms for optimizing phases (i)-(iii) that we use during

performance evaluation (see Sections 4.4.1 and 4.4.2). So our work

will be focused on finding new placements to host VMs after their

migration from underloaded and overloaded hosts. In this work, we

aim to optimize VM placement taking into account the frequency

variations caused by the workload allocation together with the estima-

tion of its impact in the overall consumption. This premise is incorpo-

rated in our policy and evaluated lately in terms of energy efficiency

and performance.

3.2.2 Algorithm considerations.

One of the main challenges when designing data center optimizations is

to implement fast algorithms that can be evaluated for each workload

batch during run-time. For this reason, the present research is focused

on the design of an optimization algorithm that is simple in terms of

computational requirements, in which both decision making and its

implementation in a real infrastructure are fast. Instead of developing

an algorithm for searching the optimal solution, we propose a sequen-

tial heuristic approach because it requires lower computational com-

plexity. Our solution scales properly in accordance with large numbers

of servers as explained in Subsection 3.2.3.

Minimizing the overall power consumption of the data center as a

whole by only considering the consumption of each server separately

may drive to some inefficiencies. The dynamic power of a host depends

linearly on the CPU utilization, while the static remains constant (see

Equation 1.) So, when the reduction in consumption is performed indi-

vidually, server by server, it results in the allocation of less workload

on each physical machine, leading to the underloaded server-issue. This

situation increases the number of active servers, that become under-

utilized, regardless the increase in the global static consumption. Oth-

erwise, if the total energy consumed by the infrastructure is considered

to be optimized, increasing the CPU utilization will reduce the num-

ber of servers required to execute the workload thus decreasing the

overall static consumption but leading to an overloaded server-scenario.

Therefore, both QoS and energy consumption could be affected as a

consequence of VM migrations.

The proposed power and performance considerations, in

Equations 1-5 and 6-8 respectively, provide a better understanding

of how the system’s behavior varies depending on frequency and uti-

lization simultaneously. According to this, a more proactive allocation

policy could be devised using DVFS to dynamically constrain aggres-

sive consolidation scenarios to preserve QoS. To this purpose, the

trade-offs between CPU utilization and frequency have to be analyzed

in terms of energy. An increase in the resource demand of a host in

terms of MIPS could represent an increment in its frequency depend-

ing on the available set of frequencies to maintain QoS. If frequency

needs to be risen, the power consumption will be increased because

of the frequency contribution (see Equation 6). So, we propose a VM

placement policy that estimates the frequency increment during work-

load consolidation. Our strategy decides to allocate workload in those

servers that have a higher utilization (but still have resources left to

accommodate the incoming VM) and that impact less on the frequency

contribution. Consequently, the policy uses more efficiently the ranges

of utilization in which the frequency is not increased.

3.2.3 Dynamic Voltage and Frequency Scaling-aware
dynamic placement.

The policy proposed in this research is not only aware of the utiliza-

tion of the incoming workload to be assigned, but also is conscious of

the impact of its allocation on servers working at different frequencies.

Dynamic Voltage and Frequency Scaling-awareness allows to predict

operating frequencies depending on VM allocation, thus helping to

estimate future energy contributions. The presented approach takes



6 of 13 ARROBA ET AL.

advantage of this knowledge to optimize VM placement within the

Cloud infrastructure under QoS and energy constraints.

Our algorithm is based on the bin packing problem, where servers

are represented as bins with variable sizes because of the frequency

scaling. To solve this nondeterministic polynomial time-hard problem,

we use a Best Fit Decreasing-based algorithm as BFDs are shown to use

no more than 11/9·OPT + 1 bins,30 being OPT the bins provided by the

optimal solution. The bin packing approach under similar conditions has

been proved to work well for this type of problems with large server

sets of 800 hosts.29

The allocation of a VM in a specific host provokes an increase in

its CPU utilization and, according to our proposed DVFS-perf configura-

tion algorithm, may increase or not its operating frequency. According

to our previous considerations, a tradeoff between servers’ utiliza-

tion and frequency may be inferred to reduce energy consumption of

dynamic workload scenarios. Typically, the frequency span in which a

CPU ranges is of about 1 GHz. So, the difference between a frequency

of the set of valid frequencies and the next one is 0.X, being more com-

mon steps of about 0.1 to 0.5 GHz. On the other hand, average cloud

workload utilization ranges from 16% to 59%.31 As we define utiliza-

tion of CPU as a value that ranges from 0 to 1, average cloud workload

utilization would be in the range 0.16 to 0.59. Thus, utilization and fre-

quency increments originated by the allocation of VMs have the same

orders of magnitude. So, in order to maximize servers’ utilization while

minimizing frequency increment, we propose to maximize the differ-

ence between these 2 parameters as can be seen in Equation 9. We

avoid the use of normalization, providing a light algorithm. We mean

that our proposed algorithm is light because, compared with tests that

we have conducted with metaheuristics as Simulated Annealing and

Grammatical Evolution, we achieve simulation times that are about 160

times lower.

Placementhost,vm = uhost,vm − Δfhost,vm (9)

uhost,vm = uhost + uvm (10)

Δfhost,vm = fhost,vm − fhost (11)

uhost,vm is the estimated CPU utilization resulting from adding both host

and vm utilizations (uhost and uvm). Δfhost,vm provides the estimated dif-

ference between the host frequency after (fhost,vm) and before (fhost) the

VM allocation calculated for the new estimated utilization. Algorithm 2

presents our DVFS-Aware Dynamic Placement proposal.

The input vmList represents the VMs that have to be migrated

according to the stages (i), (ii), and (iii) of the consolidation process,

while hostsList is the entire set of servers in the data center that are

not considered overutilized. First, VMs are sorted in a decreasing order

of their CPU requirements. Steps 3 and 4 initialize bestPlacement and

bestHost, which are the best placement value for each iteration and the

best host to allocate the VM respectively. Then, each VM in vmList will

be allocated in a server that belongs to the list of hosts that are not

overutilized (hostList) and have enough resources to host it.

In steps 7 and 8, the algorithm calculates the value of the estimated

CPU utilization (uhost,vm) and freqIncrement (Δfhost,vm) after vm allocation

using Equations 10 and 11. According to our allocation strategy, derived

from the above considerations, the placement value (Placementhost,vm)

obtained when a VM is allocated in a specific host is calculated in step

9 using Equation 9.

As can be seen in steps 10, 11, and 12, the VM is allocated in the host

that has a higher placement value, that means a high CPU utilization but,

on the contrary, it represents a low increase in frequency because of the

utilization increment. This approach minimizes the number of bins used

by this combinatorial nondeterministic polynomial time-hard problem

while taking full advantage of the range of CPU utilization available for

each frequency. The output of this algorithm is the frequency-aware

placement (FreqAwarePlacement) of the VMs that have to be mapped

according to the under/overloaded detection and VM selection policies.

3.3 Frequency-aware optimization

Our Frequency-Aware Optimization combining the DVFS-perf pol-

icy with the Freq-Aware Placement algorithm is shown in listing of

Algorithm 3. First, it finds the optimized placement of the VMs (opti-

mizedPlacement) that have to be migrated because of dynamic work-

load variations. This is calculated in Algorithm 3, taking care of the

frequency requirements. In step 2, the function consolidateVM allo-

cates the VMs according to this mapping, performing VM migrations

and updating utilization requirements for each host. Then in steps 3

and 4, the DVFS-perf configuration is obtained using Algorithm 1 with

current utilization values. Finally, the data center status is updated

according to the optimized allocation and frequency configuration. Our

DVFS-Aware strategy provides an elastic scale out that is adapted to

the varying demand of resources. Also, the algorithm is light, making

it suitable for quickly adaptation to workload fluctuations in the data

center and run-time execution.

4 SIMULATION CONFIGURATION

In this section, we present the impact of our frequency-aware poli-

cies in energy consumption because of the improved management
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of the workload and the frequency assignment in servers. However,

large-scale experiments and their evaluations are difficult to replicate

in a real data center infrastructure because it is difficult to maintain the

same experimental system condition necessary for comparing different

user and application scenarios. This can be achieved in simulation envi-

ronment as simulators helps in setting up repeatable and controllable

experiments.

For that reason, we have chosen the CloudSim toolkit32 to simulate

a Infrastructure as a Service (IaaS) Cloud computing environment. In

contrast to other simulators, CloudSim provides the management of

on-demand resource provisioning, representing accurately the models

of virtualized data centers. The software version 2.0 that we have cho-

sen supports the energy consumption accounting as well as the execu-

tion of service applications with workloads that vary along time.29 For

this work, we have provided frequency-awareness to the CloudSim sim-

ulator, also incorporating the ability to modify the frequency of servers.

This frequency management policy allows to evaluate the performance

of the algorithms proposed in Sections 3.1 and 3.2. Our code also sup-

ports switching the VM placement policy to compare our strategy with

other approaches.

Simulations by our frequency-aware version of CloudSim have been

executed in a 64-bit Windows 7 Operating System running on an Intel

Core i5-2400 3.10GHz Dell Workstation with 4 cores and 4 GB of RAM.

Moreover, the simulations are configured according to the following

considerations:

4.1 Workload

We conduct our experiments using real data from PlanetLab, that com-

prises more than a thousand servers located at 645 sites around the

world. The workload consists of 5 days of data with different resource

demand profiles obtained from the CoMon monitoring project.33 The

data traces are available and fully operative in CloudSim as this work-

load is commonly used by researchers using this simulator. By using

these traces we can compare our approach with published and future

research works.

The main features of each of the 5 sets, as the number of VMs and

both the mean and standard deviation values of the CPU utilization,

are shown in Table 1. Each of the 5 data sets includes CPU utiliza-

tion values of around a thousand VMs with a monitoring interval of

300 seconds. We have chosen this collection because each indepen-

dent workload can be executed for the same data center’s initial size.

TABLE 1 PlanetLab workload main features

Date VMs CPU mean utilization (%) CPU utilization SD

2011.03.03 1052 12.31 17.09

2011.03.06 898 11.44 16.83

2011.03.09 1061 10.70 15.57

2011.04.12 1054 11.54 15.15

2011.04.20 1033 10.43 15.21

VM, Virtual Machine.

Also, the usage of traces from a real system makes our simulation-based

analysis applicable to real scenarios.

4.2 Physical nodes

The simulation consists of a set of 400 hosts conforming a data cen-

ter. This is the minimum amount of resources required by the CloudSim

initial provisioning policy to manage the number of VMs for the differ-

ent workloads that we have selected. During simulations, the number

of servers will be significantly reduced as oversubscription is enabled.

Hosts are modeled as a Fujitsu RX300 S6 server based on an Intel Xeon

E5620 Quad Core processor @2.4 GHz, RAM memory of 16 GB and

storage of 1 GB, running a 64bit CentOS 6.4 OS virtualized by the

QEMU-KVM hypervisor.

4.2.1 Dynamic Voltage and Frequency Scaling governors.

The DVFS system of our Fujitsu server operates at 1.73, 1.86, 2.13, 2.26,

2.39 and 2.40 GHz, respectively. For our experiments, we define 2 dif-

ferent governors to dynamically manage the CPU frequency. Both of

them are fully available in our CloudSim modified version. For this work,

we have provided frequency-awareness to the CloudSim simulator, also

incorporating the ability to modify the frequency of servers according

to our new DVFS-perf policy.

• Performance. The CPUfreq governor performance* is a typical gov-

ernor available in the Linux Kernel. It sets the CPU to the highest

frequency of the system.

• DVFS-perf. This governor dynamically modifies the CPU frequency

according to Algorithm 3 so, it is set to the minimum frequency that

ensures QoS depending on the workload.

4.2.2 Server power modeling.

The power model used to estimate the energy consumed by these

servers was proposed in our previous work28 and can be seen

in Equation 12. Then the energy consumption is obtained using

Equation 13 where t determines the time in which the energy value is

required. The operating frequencies set (in GHz) is provided in 14.

PFujitsu, k = 7.25 · V2
DD(k) · fop(k) · ucpu

+ 1.63 · 10−3 · T2
mem + 4.88 · 10−11 · FS3

(12)

EFujitsu = PFujitsu · t (13)

*www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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fop(k) = {1.73,1.86,2.13,2.26,2.39,2.40}(GHz) (14)

VDD(k) = {0.80,0.90,1.05,1.10,1.15,1.20}(V) (15)

This model presents a validation error of 4.46% when comparing power

estimation to real measurements of the actual power. We used appli-

cations that can be commonly found in nowadays’ Cloud data centers

(including web search engines, and intensive applications) for training

and validation stages. We assume a thermal management that allows

memory temperature and fan speed to remain constant as we are inter-

ested in analyzing the power variations only because of utilization and

DVFS management provided by our Freq-Aware optimization. The tem-

perature of the memory Tmem and the fan speed FS are considered

constant at 308 K and 5370 RPM, respectively. Both parameters take

their average values from the exhaustive experimental evaluation for

this type of server that has been performed in our aforementioned pre-

vious work. This approach is valid because current models usually take

into account only the variation of the dynamic consumption, as seen

in Section 2. By including our power model in the CloudSim toolkit,

we are able to evaluate the power consumption in a more accurate

way, as both the dynamic (depending on CPU utilization and frequency)

and the static contributions are now considered. Thus, the impact of

DVFS and consolidation-aware optimizations on the data center IT

energy consumption is more likely to be measured by including our

proposed models.

4.2.3 Active server set.

In this work, we assume that a server is switched off when it is idle, so no

power is consumed when there is not any any running workload. Also,

servers are turned on when needed, if the system is overloaded. We

take into account the booting energy consumption required by a server

to be fully operative as seen in Equation 17.

Pboot = 1.63 · 10−3 · 3082 + 4.88 · 10−11 · 53703 = 162.1768W (16)

tboot = 300s (17)

Eboot = Pboot · tboot = 13.514 · 10−3kW · h (18)

where Pboot is the server booting power working at 308 K and

5370 RPM as defined above and tboot is the booting time obtained exper-

imentally.

4.3 Virtual Machines

4.3.1 Virtual Machine types.

The simulation uses heterogeneous VM instances that correspond to

existing types of the Amazon EC2 Cloud provider. The Extra Large

Instance (2000 MIPS, 1.7 GB RAM), the Small Instance (1000 MIPS,

1.7 GB RAM) and the Micro Instance (500 MIPS, 613 MB RAM) are

available for all the scenarios. All the VM are forced to be single-core to

meet the PlanetLab data set requirements.

4.3.2 Migration policy.

In all our scenarios, we allow online migration, where VMs follow

a straightforward load migration policy. During migration, another

VM, which has the same configuration as the one that is going to

be migrated, is created in the target server. Then the cloudlets are

migrated from the source VM to the target VM. Finally, when the migra-

tion is finished the source VM is removed. Live migration has 2 different

overheads that affect to energy consumption and performance degra-

dation. Therefore, it is crucial to minimize the number migrations in

order to optimize energy efficiency while maintaining QoS.

Energy overhead. A migration takes a time known as migration time

(tmigration), that is defined in Equation 19. Migration delay depends on the

network bandwidth (BW) and the RAM memory used by the VM. We

consider that only half of the bandwidth is used for migration purposes,

as the other half is for communication. Thus, migrations have an energy

overhead because, during migration time, 2 identical VMs are running,

consuming the same power in both servers.

tmigration = RAM
BW∕2

(19)

Performance overhead. Performance degradation occurs when the

workload demand in a host exceeds its resource capacity. In this work,

we model that oversubscription is enabled in all servers. So, if the VMs

hosted in 1 physical machine simultaneously request their maximum

CPU performance, the total CPU demand could exceed its available

capacity. This situation may lead to performance degradation because

of host overloading. The impact on SLA can be calculated as the SLA

violation time per active host (SLATAH) that can be seen in Equation 20.

On the other hand, when overloading situations are detected, VMs

are migrated to better placements, thus provoking performance degra-

dation due to migration (PDM) as seen in Equation 21. The metric used

in this work to determine the SLA violation (SLAviolation)29 combines

SLATAH and PDM as shown in Equation 22:

SLATAH = 1
M

∑

i=1

M
t100%i

tactivei

(20)

PDM = 1
V

∑

j=1

V
pdmj

Cdemandj

(21)

pdmj = 0.1 · ∫
t0+tmigration

t0

ujdt (22)

SLAviolation = SLATAH · PDM (23)

where M is the number of servers; t100%i
and tactivei

are the time in which

the CPU utilization of the host i is 100% and the total time in which it

is active, respectively. V is the number of VMs, and Cdemandj
represents

the CPU demand of the VM during its lifetime. pdmj defines the per-

formance degradation per VM during tmigration. In our experiments, it is

estimated as the 10% of the CPU utilization in MIPS during the migra-

tion time of VM j. Finally, t0 is the time in which the migration starts and

uj is the CPU utilization of VM j.
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4.4 Dynamic consolidation configuration

The present work aims to evaluate the performance of DVFS-aware

dynamic consolidation. Consolidation phases (i), (ii), and (iii) are able

to use the algorithms for the detection of overloaded or underloaded

hosts and for the selection of VMs to be migrated that are available

in CloudSim 2.0.29 We have simulated all the possible combinations

for both types of algorithms with the default configuration of internal

parameters, resulting in 15 different tests. The internal parameters for

each option are set to those values that provide better performance

according to Beloglazov et al.29 Finally, consolidation phase (iv) is able

to use 2 different power-aware placement algorithms.

4.4.1 Over and underloading detection algorithms.

We consider the detection of overloaded or underloaded hosts using 5

specific policies that belong to 3 different detection strategies.

• Adaptive Utilization Threshold Methods. Includes the Interquar-

tile Range and the Median Absolute Deviation (MAD) algorithms, and

offers an adaptive threshold based on the workload utilization to

detect overloaded or underloaded hosts. The internal safety param-

eters take the value 1.5 and 2.5, respectively, and define how aggres-

sively the consolidation is considered in this stage.

• Regression Methods. Both the Local Regression and the Local Regres-

sion Robust are Regression Methods based on the Loess method and

have the same internal parameter of 1.2.

• Static Threshold Method. The Static threshold sets a fixed value to

consider when a host is overloaded or underloaded. The internal

parameter is 0.8.

4.4.2 Virtual Machine selection algorithms.

The selection of the VMs that have to be migrated from overloaded or

underloaded hosts is performed by 3 different algorithms.

• Maximum correlation. The system migrates the VM that presents

a higher correlation of CPU utilization with other VMs so, the peak

loads would occur at the same time.

• Minimum migration time (MMT). The algorithm selects the VM that

takes less time to be migrated when compared with the rest of VMs

hosted in the same server.

• Random choice. The VM is randomly selected.

4.4.3 Virtual Machine placement algorithms.

• Power Aware Best Fit Decreasing. This placement policy for Cloud

infrastructures takes into account the power consumption of the

servers when finding an optimal placement under dynamic work-

load conditions.29 It works well for SLA-constrained systems, main-

taining QoS while reducing energy consumption. This solution does

not take into account frequency increments because of workload

allocation.

• Frequency-Aware Placement (Freq-Aware Placement). This is the

DVFS-aware placement policy that we propose in Algorithm 2. This

solution allows a dynamic consolidation that is aware of both power

and frequency also taking into account QoS.

4.5 Scenarios

We provide 3 different scenarios to evaluate the performance of our

frequency-aware optimization. For this purpose, we will compare our

work with 2 different approaches. All the proposed scenarios are able

to power on/off servers when needed as can be seen in section 4.2.3

• Baseline scenario represents the default performance of CloudSim.

The performance governor is active so, the servers always oper-

ate at the maximum frequency. Power Aware Best Fit Decreasing

placement is used to perform VM allocation.

• DVFS-only scenario uses our DVFS-perf governor combined with

Power Aware Best Fit Decreasing placement. Thus, the frequency

of each server is reduced to the lowest value that allows the system

to meet QoS. However, the mapping is not aware of the allocation

impact on CPU frequency that also impacts on the power consump-

tion.

• Freq-Aware Optimization scenario combines our DVFS-perf gover-

nor with our Freq-Aware Placement as shown in Algorithm 3. Both

utilization and frequency estimations are considered to find the

optimized allocation. It aims to evaluate our proposed optimization

strategy.

5 EXPERIMENTAL RESULTS

We have simulated the 3 different scenarios for each of the 5 different

PlanetLab workloads presented in Table 1, and tested the 15 different

combinations of algorithms for overloading detection and VM selection

aforementioned. Therefore, for each of the daily workloads, we are able

to present the following results per test (under/overload detection-VM

selection) and per scenario, in order to compare our Freq-Aware opti-

mization with the other 2 alternatives.

5.1 Performance analysis

We consider the following metrics to analyze the obtained results. The

number of VM migrations is considered as a figure of merit because

migrations may cause SLA violations because of performance degra-

dation, also impacting on energy consumption. Additionally, we have

included the overall SLA violations provided by the metric SLAviolation

to simultaneously verify if our policies meet QoS requirements. As

CloudSim allows turning machines on when needed, we have included

the additional booting energy consumption of the servers to the sim-

ulation. The number of Power on events is our proposed metric to eval-

uate its impact because, reducing the number of these events would

decrease the overall data center energy. Service outages are experi-

enced when the power density exceeds the maximum capacity of the

grid. So, we evaluate the peak power during the simulation in order to

analyze the system’s performance under critic situations in terms of

electricity supply. Finally, the energy signature is obtained in order to

evaluate the efficiency introduced by our strategy.

Table 2 shows the average values of these metrics when compar-

ing the baseline with the DVFS-only policy and with the Freq-Aware

optimization. For each PlanetLab workload (represented as the date
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TABLE 2 Average values per day for baseline comparison

Optim. Date VM migrations Power on events SLA violations Peak power Energy

Policy (yy.mm.dd) reduction (%) reduction (%) reduction (%) reduction (%) savings (%)

DVFS-only 2011.03.03 4.40 13.63 0 − 6.08 4.64

2011.03.06 4.81 9.60 0.01 − 2.87 3.45

2011.03.09 3.63 5.16 0 − 7.27 3.44

2011.04.12 1.44 1.49 0 0.1 2.36

2011.04.20 1.82 − 3.72 0.01 5.81 2.59

Freq-Aware 2011.03.03 23.44 86.10 0 68.16 34.82

2011.03.06 19.38 79.16 0.01 64.29 34.64

2011.03.09 19.53 85.41 0 64.34 39.14

2011.04.12 26.77 88.03 0.01 66.19 38.88

2011.04.20 19.55 85.81 0 69.09 41.62

DVFS, Dynamic Voltage and Frequency Scaling; SLA, Service Level Agreement; VM, Virtual Machine.

FIGURE 1 Average metrics per test. DVFS, Dynamic Voltage and Frequency Scaling; IQR, Interquartile Range; LR, Local Regression; MAD, Median
absolute deviation; MC, Maximum correlation; MMT, Minimum migration time; RS, Random choice; SLA, Service level agreement; THR, Static
threshold; VM, Virtual Machine

when it was obtained), the table shows the averaged values that result

from their execution under every possible combination of the overload-

ing detection and the VM selection algorithms. An average of 3.35%

energy savings is achieved just including the DVFS capabilities to the

simulation infrastructure for all the workloads. The savings in energy

consumption come from the combined reduction of the VM migrations

and the Power on events. In this scenario, QoS is maintained, but the

peak power is not improved when compared with the baseline.
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The proposed Frequency-Aware Placement combined with the

DVFS management significantly reduces both the number of power

on events and VM migrations. The minimization of the times that a

server is powered on has several benefits, not only reducing the energy

consumption but also extending its lifetime. However, its impact on

the total energy consumption represents only about 5.31%. So, the

energy savings are obtained mainly because of the reduction of the

VM migrations as, during each migration, an identical VM is simulta-

neously running in the source and in the target hosts. Our proposed

Freq-Aware optimization policy outperforms the baseline obtaining

average energy savings of 37.86% significantly reducing peak power

consumption around 66.14% while maintaining the QoS, as can be seen

in the peak power reduction column and in the SLA violations reduction

column, respectively.

The different tests, each of them representing a specific combination

of overloading detection and VM selection algorithms, perform differ-

ently. However, the performance pattern for each test is repeated for

every considered PlanetLab workload in Table 1. Thus, we are able to

analyze the system’s performance for every test, shown in Figure 1,

which presents the averaged values of each metric for all the work-

loads. As shown in 1E, both policies achieve energy savings for each

test but the Freq-Aware optimization reduces the data center energy

consumption to an average value of 69.16 kWh for all the workloads

regardless the combination of algorithms. This means an average sav-

ings of 37.86%. In 1D, we obtain a similar pattern in the overall peak

power of the IT infrastructure, achieving a reduction of about 66.14%.

The same occurs in Figure 1C for the number of power on events that

is reduced to about 76.53 events, showing average savings of 86.03%.

However, not every test performs the same in terms of SLA violations.

Overall SLA violation for local regression methods combined with Max-

imum correlation and MMT algorithms present better values of about

0.05% as can be seen in Figure 1B. Also in Figure 1A, average VM

migrations vary considerably from one test to another. So, the SLA vio-

lations and VM migrations metrics may be determining factors when

selecting a combination of overloading detection and VM selection

algorithms.

5.2 Run-time evaluation

Moreover, to deeply understand the performance of the Freq-Aware

optimization during run-time, we have selected 1 of the workloads for

its simulated execution under the conditions of a specific test. Figure 2

presents the temporal evolution of the test that combines the MAD

and MMT algorithms as it achieved the lowest total energy consump-

tion. The test runs the 1052 VMs of the workload dated on 2011.03.03

because it achieves the highest CPU utilization and standard deviation

(see Table 1).

In this framework, we evaluate additional metrics to compare

both baseline and Freq-Aware scenarios. Figure 2A shows the global

resource demand of this workload in terms of MIPS. The global uti-

lization represents the average CPU utilization of all the servers in the

data center. The number of active hosts within the total facility is also

analyzed because, as this value increases, the global utilization will be

reduced. Finally the cumulative energy consumption of the IT infras-

tructure is presented to study its deviation between both scenarios

during a 24 hours-workload.

For the baseline policy, the number of active hosts is highly increased

during peaks of workload demand, consequently reducing the data

center global utilization, as can be seen in Figures 2B and C, respec-

tively. The decrease on the overall utilization also reduces each server

energy consumption, as its power depends linearly on CPU demand.

However, the static consumption (which accounts for about 70% of

FIGURE 2 Temporal evolution for Median absolute deviation-Minimum migration time test running workload 2011.03.03. MIPS, Millions of
Instructions Per Second
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TABLE 3 Average results for MAD-MMT test running workload
2011.03.03

Scenario Global utilization (%) Active hosts Total energy (kWh)

Baseline 60 35.49 125.45

Freq-Aware 83 19.55 76.72

total consumption in each physical machine) due to the additional

servers that are required to execute the workload with this utilization,

highly increases the total energy budget. On the other hand, for the

Freq-Aware optimization policy, both values remain more constant, as

shown in Figures 2B and E, respectively.

The DVFS configuration of the active server set during run-time can

be seen in Figure 2D. The DVFS mode operating at 2.13GHz is the most

selected, as it offers a wider range of utilizations in which the frequency

remains constant. This frequency allows a sufficiently high utilization

(from 77.5% to 88.75%) that helps to minimize the number of servers.

The rest of DVFS modes are also used but mainly to absorb load peaks

as dynamic workload fluctuates during run-time.

Our algorithm speeds up both the consolidation into a lower num-

ber of active servers and the elastic scale out of the IT infrastruc-

ture, increasing the global utilization in a 23.46% while reducing the

number of active hosts around a 44.91%. Table 3 presents the aver-

aged values for these results. Figure 2F shows how this behavior

impacts on the energy usage of the data center where the baseline

consumption grows at a higher rate during dynamic workload varia-

tions than for the optimized scenario, achieving total energy savings

of 45.76%.

6 CONCLUSIONS AND FUTURE WORK

The contribution of Cloud data centers in the overall consumption of

modern cities is growing dramatically, so minimizing their energy con-

sumption is a critical challenge to reduce economical and environmen-

tal impact. Cloud workloads significantly vary over time, thus achiev-

ing an optimal allocation of resources while preserving performance

is not trivial.

The work presented in this paper makes relevant contributions on

the optimization of Cloud data centers from a proactive perspective.

In this work, we present the Freq-Aware optimization that combines a

novel reactive DVFS policy with our proactive Frequency-aware Con-

solidation technique. We have achieved competitive energy savings of

up to 41.62% at the data center level maintaining QoS, even improv-

ing slightly the SLA violations around 0.01%, for real workload traces

in a realistic Cloud scenario. According to our results, our algorithm

enhances the consolidation process and speeds up the elastic scale

out, reducing the global peak power demand about a 66.14% while

improving the energy efficiency.

For future research, we plan to extend the techniques proposed in

this paper (Freq-Aware optimization) for other application program-

ming models supporting Web, High-Performance Computing, Big Data,

enterprise, and transactions on mobile applications, and for different

power models that also include memory performance. We also envision

further energy optimization techniques, thus considering the combined

effect of workload consolidation, DVFS and temperature. This research

will help to optimize not only the computing resources of the data

center but also the cooling contribution.
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