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Summary
The cloud infrastructures provide a suitable environment for the execution of large‐scale scientific

workflow application. However, it raises new challenges to efficiently allocate resources for the

workflow application and also to meet the user's quality of service requirements. In this paper,

we propose an adaptive penalty function for the strict constraints compared with other genetic

algorithms. Moreover, the coevolution approach is used to adjust the crossover and mutation

probability, which is able to accelerate the convergence and prevent the prematurity. We

also compare our algorithm with baselines such as Random, particle swarm optimization,

Heterogeneous Earliest Finish Time, and genetic algorithm in a WorkflowSim simulator on 4

representative scientific workflows. The results show that it performs better than the other

state‐of‐the‐art algorithms in the criterion of both the deadline‐constraint meeting probability

and the total execution cost.
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1 | INTRODUCTION

Scientific experiments are usually represented as workflows,1 where

tasks are linked according to their data flow and compute dependencies.

Such scientific workflows are data‐intensive and compute‐intensive

applications; for example, Compact Muon Solenoid experiment for

the Large Hadron Collider at CERN2 produces a huge amount of data

to be analyzed, which are more than 5 peta‐bytes per year when run-

ning at peak performance. The Human Genome Project is aimed at

sequencing and identifying all 3 billion chemical units in the human

genetic instruction set and discovering the genetic roots of disease to

find treatments. These scientific workflows have tremendous data

and computing requirements and need a high‐performance computing

environment for execution. Cloud computing is the latest development

of distributed computing, grid computing, and parallel computing,3,4

which delivers the dynamically scaling computing resources as a utility,

much like howwater and electricity were delivered to households these

days. The patterns that cloud computing provides resources contain the

following: Infrastructure as a Service (IaaS), Platform as a Service, and

Software as a Service.3,5 In this paper, we refer to IaaS cloud, which

offers us a virtual pool to provide unlimited virtual machines (VMs).

The main character of cloud computing is virtualization. Cloud

enables to provide computational resources in the form of VMs. A
wileyonlinelibrary.com
process that maps tasks in a workflow to compute resources (VMs)

for execution (preserving dependencies between tasks) is called

workflow scheduling. There are 2 layers for cloud workflow schedul-

ing, which include VM‐task mapping and the execution order for tasks

in a single VM. In this paper, we just use the evolutionary approach to

schedule VM‐task mapping in the first layer, and the execution order in

a single VM is set as that in paper,6 where the VM will schedule the

task with the smallest end time. There are different optimization objec-

tives for workflow scheduling in cloud, including makespan, cost,

throughput, and load balancing. In this paper, the optimization objec-

tive is the cost of executing a scientific workflow and subject to a

deadline constraint, which is to find a proper task‐VM mapping

strategy, which minimizes the total financial cost and the makespan

satisfies the deadline constraint.

The context above is a constrained optimization problem, and to

transform constrained problem into unconstrained one, most evolu-

tionary algorithms usually use static penalty function to penalize infea-

sible solutions by reducing their fitness values in proportion to the

degrees of constraint violation. However, it is difficult to set a suitable

penalty factor. Another common method is to eliminate the infeasible

individuals within their evolutionary process. However, some infeasi-

ble individuals usually hold very rare and excellent genes that are very

valuable for the next generations and are unable to be eliminated. We
Copyright © 2016 John Wiley & Sons, Ltd./journal/cpe 1
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propose a coevolutionary genetic algorithm (CGA) with adaptive pen-

alty function for the constrained scientific workflow scheduling in

clouds. We have considered the main features of cloud providers such

as heterogeneous computing resources and dynamic provision. An

adaptive penalty function is applied in the CGA, which will adjust itself

automatically during the evolution. And we apply the notion of coevo-

lution to adjust the crossover and mutation probability factors, which

are helpful for the convergence. Our main contributions can be sum-

marized as follows: (1) present the optimization model of scientific

workflow scheduling in cloud environment, which is cost minimization

and deadline constrained, and consider cloud resources' dynamic

provision pattern and heterogenetic character. (2) Propose a new

CGA with adaptive penalty function approach CGA2, for deadline‐

constrained scientific workflow scheduling in clouds. It applies a self‐

adaptive penalty function into the CGA, which is able to efficiently

prevent prematurity and uses the notion of coevolution to adjust the

crossover and mutation probabilities, which can efficiently accelerate

the convergence. (3) Unlike existing genetic approaches, we generate

the initial population based on the critical path (CP),7 which can also

efficiently prevent prematurity and improve deadline meeting for

workflow scheduling. Simulation results demonstrate that our

approach has high accuracy in terms of deadline‐constraint satisfaction

at lower costs.

The remainder of this paper is organized as follows: the follow-

ing section introduces the related works. The context of our model

is presented in Section 3. Section 4 presents the CGA2 approach

and the adaptive penalty function. Section 5 applies the proposed

approach (CGA2) to cloud scientific workflow scheduling problem.

Section 6 evaluates the performance of the CGA2 and has made

comparison with the existing algorithms and then gives the experi-

mental results. We conclude the paper with a discussion and a

description of future work in Section 6.1.
FIGURE 1 Workflow example
2 | RELATED WORK

To address the problem of constrained workflow scheduling in cloud

computing, we have adopted some evolutionary algorithms to gener-

ate near‐optimal solutions. Wang and Yeo et al8 presented a look‐

ahead GA, which used the reliability‐driven reputation to evaluate

the resource's reliability. Moreover, the multiobjective model aiming

to optimize both the makespan and the reliability of a workflow appli-

cation was proposed. A particle swarm optimization (PSO)‐based

approach was proposed in 1 study,9 which aimed to minimize the exe-

cution cost of a workflow while balancing the task load on the available

resources. Rodriguez and Buyya6 presented a cost‐minimization and

deadline‐constrained PSO approach for cloud scientific workflow

scheduling. It considered fundamental features of IaaS providers, like

providing elastic and heterogeneous computing resources (VMs). A

penalty function was used in their algorithms that the particles violat-

ing the constraints are inferior to the feasible particles. However, this

method would lead a premature convergence, which is very common

in the PSO algorithms.

Sawant10 used the GA for VMs configuration in cloud computing.

He incorporated the constraints into the objective fitness function, so
as to transform the constrained optimization problem to an

unconstrained one. This is the most popular way to handle the

constrained optimization problem and is particularly easy to imple-

ment. But it is very hard to set a suitable penalty factor to tradeoff

between the global optimization searching and the constraints satis-

faction. The coefficients they used have no physical meaning and were

obtained through empirical evaluation. Huang11 proposed a new

improved GA, where the chromosomes not only represent the com-

puting resource‐task assignment but also indicate the queue on the

VMs' task being executed. It first evolves individuals according to the

optimization objective and changes the evolved population based on

the constrained objective when the individuals violate the constraint.

This approach releases the burden of devising an appropriate penalty

function for constrained optimization problem. However, it needs to

evolve for numerous generations, and a feasible solution may not be

found.

The ant colony optimization approach was used for VMs configu-

ration in cloud computing, which aimed to be energy efficient.12 The

experiments showed that the proposed approach achieved superior

energy gains through better server use and required less resource than

the first‐fit decreasing approach. A PSO for workflow scheduling in

cloud computing was proposed in 1 study,13 which considered both

the computation cost and the data transmission cost. The experiments

showed that the PSO can achieve as much as 3 times of cost savings,

and the workload is better than that of the existing best resource

selection algorithm.
3 | PROBLEM FORMULATION

A workflow is depicted as G = (V, E), where V = {t1, t2, … , tn} and E is the

vertices and edges of the graph, respectively. Each vertex represents a

task t, and there are n tasks in the workflow. The edges maintain exe-

cution precedence constraints. Having a directed edge ex,y from tx to ty,

x , y ∈Mmeans that ty cannot start to execute until tx is completed; task

tx is a parent task of ty, and ty is a child task of tx. Tasks without parents

are called the entry task tentry, and tasks without child tasks are called

the exit task texit. Each workflow has a deadline dW associated to what

determines the allowed longest time to complete its execution.

Figure 1 shows an example of workflow, in which each node repre-

sents a task and the arcs show the data transfer between nodes.

The IaaS cloud providers offer a range of VM types denoted by

VM ¼ VM1;VM2;…;VMn. Different VM types provide different com-

puting resources, and then we define VM type in terms of its process-

ing capacity PVMi and cost per unit of time CVMi. Virtual machines are

charged per unit of time τ, if τ = 60 minutes, use of VM for 61 minutes



TABLE 1 Notations

Notation Description

VMi Virtual machine i

PVMi Processing capacity for VMi

CVMi Cost per unit of time for VMi

RTVMi
ti Running time of task ti executed by VMi

sti The size of task ti

TTei , j The transfer time between a parent task ti and child task tj

doutti The output data size of task ti

β The bandwidth between each VM

TEC The total execution cost

TET The total execution time

dW The workflow's deadline constraint

STti The starting time of task ti

ETti The ending time of task ti

LETVMti The lease ending time of VMti, also the time that VMti is idle

FIGURE 2 Coevolution model

LIU ET AL. 3
would incur a payment of 2 hours (2 units of time). We assume

that each task is executed by a single VM, and a VM can execute

several tasks.

The running time RTVMti
ti of task ti executed by VMti is calculated in

Equation 1, where sti is the size of task ti and PVMti is the processing

capacity of VMti. The transfer time TTei , j between a parent task ti

and its child task tj is depicted in Equation 2, where doutti
is the output

data size produced by task ti, β is the bandwidth between each VM,

and the bandwidth for all VMs is roughly same. If 2 tasks are executed

in the same VM, the transfer time is 0.

RT
VMti
ti

¼ sti=PVMti
(1)

TTei;j ¼ doutti
=β (2)

There are many different optimization objectives for workflow

scheduling in clouds. In this paper, we focus on finding the optimiza-

tion solution for workflow scheduling, which can minimize the total

execution cost and satisfy the deadline constraint. We define a sched-

uling vector S = (M, TEC, TET) in terms of tasks to resources matching

M, the total execution cost TEC, and the total execution time TET. M

is the task‐VMs matching, which is composed of VM types, start time,

and end time for all tasks, M ¼ mVMt1
t1 ;mVMt2

t2 ;…;mVMtM
tM

� �
, m

VMti
ti

¼
ti;VMti; STti; ETtið Þ , which means task ti is associated with VMti, and

the start time and the end time for task ti are calculated by the follow-

ing equations:

STti ¼
LETVMti

; if ti is an entry task

max
max

ta∈parent tið Þ
ETta þ TTea;i

� �
; LETVMti

 !
otherwise

8>><>>: ; (3)

ETti ¼ STti þ RT
VMti
ti

; (4)

where LETVMti is the lease end time of VMti, which is also the time

when VMti becomes idle. There will be no charge for data transfers

within the same data center, and we do not consider this fee when cal-

culating the workflow total cost. The total execution cost TEC and the

total execution time TET are calculated as in the following equations:

TEC ¼ ∑
VMj j
i¼1 CVMti

×
RT

VMti
ti

τ

" #
þ ∑i∈T;j∈TTTei;j × TCVMti

; (5)

TET ¼ max ETti : ti∈Vð Þ; (6)

where CVMti is the processing cost for VMti, and TCVMti is the data

transfer cost for VMti.

The problem in this paper can be described as finding a scheme S

with the minimum TEC, and the TET does not exceed the workflow's

deadline constraint dW, as shown in the following equation.

Minimize TEC

Subject to : TET ≤ dW
(7)

In this paper, we use a CGA with adaptive penalty function

approach (CGA2) to solve this optimization problem. Table 1 gives the

description of notations used in our paper.
4 | COEVOLUTIONARY GA WITH ADAPTIVE
PENALTY FUNCTION

In this section, we have described a CGA with adaptive penalty

function approach (CGA2) to solve constrained optimization problem.
4.1 | Mechanism of the CGA

Coevolution is the process of mutual adaptation of two or more

populations. The key issue in the coevolutionary algorithms is that

the evolution of a population depends on another population.

In 1994, Paredis14 introduced CGA. Coello15 incorporated the

notion of coevolution into a GA to adapt genetic coefficients and to

solve constrained optimization problems. In this work, we will use

the notion of coevolution to adjust the crossover and mutation proba-

bilities and apply an adaptive penalty function coefficients scheme in

the GA.

The structure of coevolution model in CGA2 is shown in Figure 2.

In CGA2, 2 types of populations are used. In particular, 1 type of a sin-

gle population (denoted by Population2) with size M2 is used to adapt

suitable crossover and mutation probability factors, and another kind

of multiple populations (denoted by Population1 , 1, Population1 , 2,…,

Population1 , M2) in that each of them is with sizeM1 that evolves in par-

allel with different crossover and mutation schemes to search good
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decision solutions. Each individual Bj in Population2 represents a set of

crossover and mutation probability factors for individuals in Popula-

tion1 , j, where each individual represents a decision solution.

In every generation of coevolution process, each Population1 , j will

evolve by the GA for a certain number of generations (G1) with cross-

over and mutation probability factors obtained from individual Bj in

Population2. Then the fitness of each individual Bj in Population2 will

be determined. After all individuals in Population2 are evaluated, Popu-

lation2 will also evolve by using GA. The above coevolution process will

repeat until a predefined stopping criterion is satisfied (eg, a maximum

number of coevolution generation G2 is reached).

In short, 2 types of populations evolve interactively, where Popu-

lation1 , j with an adaptive penalty function scheme is used to evolve

decision solutions, while Population2 is used to adapt crossover and

mutation probabilities for solution evaluation. Owing to the coevolu-

tion, not only decision solutions are explored evolutionary but also

crossover and mutation probabilities are adjusted in a self‐tuning

way to avoid the difficulty of setting suitable factors by trial and

error.16
4.2 | Adaptive crossover and mutation probabilities

In GA, the bigger the crossover probability px and mutation probability

pm are, the more new individuals will be generated along with the

diversity of population. But if the probabilities are too big, good genes

will be destroyed easily; otherwise, if the probabilities are too small, it

is not conducive to generate new individuals, and the search speed will

slow down.17

According to Zhang et al,18 the evolutionary process in GA can be

depicted as 4 states, including initial state, submaturing state, maturing

state, and matured state. The crossover probability px and mutation

probability pm are adjusted differently based on population states. For

example, if there are almost inferior individuals with extremely poor fit-

ness, we should increase pm and decrease px, like in the initial state.

If the span of fitness values in a population is very large, the cross-

over probability px should be increased, like submaturing state and

maturing state. If there are almost excellent individual with good fit-

ness, we could decrease px and pm as in the matured state. According

to these rules and inspired by the idea in the literature,19,20 a self‐adap-

tive crossover and mutation operator is described as in the following

equations:

px ið Þ ¼ ω1 × cos
π
2
×

1

e σ1 ið Þ þ σ2 ið Þ þ ⋯ þ σm ið Þð Þ

� �
; (8)

pm ið Þ ¼ ω2 × fi=fp; (9)

where px(i) is the crossover probability for ith individual and pm(i) is the

mutation probability. σm(i) = |fi − fi(m)|/fi, fi(m) is the mth closest individ-

ual to individual i in terms of fitness value. fi is the fitness value of

individual i, and fp is the individual with biggest fitness value in the

population. ω1 and ω2 are the crossover and mutation probability

factors, which are adapted through coevolution.
4.3 | Fitness calculation with adaptive penalty
function

A suitable penalty function plays an important role in the performance

of GAs, and it becomes more important when the constraints are

stricter, which means that the optimal solution is nearing the boundary

between the feasible and infeasible search space.21,22 The most com-

mon form of the penalized fitness function is depicted as follows:

Fai ¼ Fa xið Þ ¼ F xið Þ − P xið Þ ¼ F xið Þ þ ∑m
j¼1λ jð Þ × Ej xið Þ; (10)

where Fai is the fitness function of ith individual after penalty. F(xi) is

the fitness value for the optimizing objective, λ(j) is the penalty factor

for the jth constraints violation, m is the number of constraints, and

Ej(xi) is the jth constraint violation for ith individual.

Inspired by Nanakorn et al,23 the penalty function should be

suitable for all infeasible individuals. If it is too small, many infeasible

individuals may have higher penalized fitness value, and the popula-

tion would move toward a false direction to the infeasible region.

Otherwise, if it is too large, some individuals with good genes will

be eliminated, which may lead to premature convergence. According

to Tessema et al,24 an adaptive penalty function strategy is applied

to keep track of the number of feasible individuals in the population

to determine the amount of penalty added to the infeasible

individuals.

First, each individual's fitness value and constraint violation will be

normalized by Equations 11 and 12.

eF xið Þ ¼ F xið Þ−Fmin

Fmax −Fmin
; (11)

where eF xið Þ is the normalized fitness value, and Fmin and Fmax are the

smallest and largest fitness values for all individuals in the current pop-

ulation. In this way, each individual's fitness will lie between 0 and 1.

And the normalized constraint violation eE xið Þ of each infeasible individ-

ual is calculated as follows:

Ẽ xið Þ ¼ 1
m
∑m
j¼1

Ej xið Þ
Emax
j

; (12)

where m is the number of constraints and Emax
j is the maximum viola-

tion for jth constraints for all infeasible individuals.

Furthermore, for different evolutionary states in GA, the penalty

rule should be adapted accordingly. For example, if there are few fea-

sible individuals in the population, the infeasible individuals with lower

constraint violation will be less penalized than those with higher con-

straint violation. On the other hand, if there are many feasible individ-

uals in the population, the infeasible individual with lower normalized

fitness should be less penalized. According to literature,21,24 the final

fitness value is formulated in the following.
1. If there is at least 1 feasible individual in the current population,

the fitness function is as shown in the following equation:

F1a xið Þ ¼
eF xið Þ for feasible individualffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieF xið Þ2þeE xið Þ2 þ
q

1−rfð ÞeE xið ÞþrfeF xið Þ� otherwise
h

;

8><>: (13)



LIU ET AL. 5
where rf ¼ number of feasible individuals
population size . In this way, the individuals with

both low fitness value and low constraint violation will be considered

better than those with high fitness value or high constraint violation.

And if the feasibility ratio (rf) in the population is small, then the

individual that is closer to the feasible space will be considered better.

Otherwise, the individual with lower normalized fitness value will

be better.

1. If there is no feasible individual in the current population, the

fitness function is calculated as in the following equation.

F1a xið Þ ¼ eE xið Þ (14)

Obviously, the individuals with smaller constraints violation are

considered better. Consequently, the search will move to the region

where the sum of constraints violation is small (ie, the boundary of

the feasible region).

The fitness value for ith individual in Population1 , j in CGA2 is

evaluated based on Equations 13 and 14.

Each individual in Population2 represents a set of factors (ω1 and

ω2). After Population1 , j evolves for G1 generations, the jth individual Bj

in Population2 is evaluated by the following equation:

F2 Bj

� � ¼ −min F1j

� �þ numinfeasible
M1

(15)

where F1j is the fitness values for all individuals in Population1 , j,

numinfeasible is the number of infeasible individuals in Population1 , j,

and M1 is the size of Population1 , j.
5 | THE CGA2 FOR WORKFLOW
SCHEDULING

5.1 | CGA2 modeling

In this paper, we use 2 types of chromosomes to model CGA2 for

scientific workflow scheduling in clouds. As shown in Figure 3,

chromesomei , j in Population1 , j represents the decision solution, which

is also the ordered pair of task‐resource matching of a workflow. For

the scheduling scenario here, the position of each gene in

chromosomei , j is the task number, and the value of each gene in

chromosomei , j is the VMs' number; thus, the dimension of a

chromosomei , j is the number of tasks in a workflow. The range of
FIGURE 3 Chromosome encoding in the coevolution
genes in chromosomei , j is determined by the number of resource avail-

able to run the tasks. Figure 3 represents a workflow with 8 tasks and

5 VMs available. The fitness function is used to determine how good a

decision solution is, which is calculated by the optimizing objective

total execution cost TEC and the constraint total execution time TET.

The calculation of TEC and TET for a chromosome is explained in the

next section.

chromosomem in Population2 represents the crossover and muta-

tion probability coefficients, which is defined by the binary encoding.

The range of ω1 is (0, 1], and we use the first 7 genes to represent

the coefficient ω2. The value of ω1 in chromosomem is calculated as

ω1 ¼ 26þ24þ22þ1
128 ¼ 0:6640625. The range of ω2 is also (0, 1], and we

use the latter 7 genes to represent the coefficient ω2. And the value

of ω2 is calculated as ω2 ¼ 25þ23þ1
128 ¼ 0:3203125.

Population1 , j is the evolution decision solutions to match the task

with resource to minimize the total execution cost TEC and satisfy the

constraint total execution time TET. Population2 adapts the crossover

and mutation probabilities for solution evolution.
5.2 | TEC and TET calculation

To address the workflow scheduling problem, we need to estimate the

running time of workflow application with a specific task‐VM mapping

schedule first and calculate the cost accordingly. The total execution

cost TEC and the total execution time TET of a chromosomei , j in Popu-

lation1 , j are shown in Algorithm 1. The kth position value of

chromosomei , j(k) represents that task k is associated with

VMchromosomei , j(k). In Population1 , j, a chromosome is a task‐resource

match.

First, we initialize the VMs state matrix VS and the task state

matrix TS. A set of workflow tasks T and a set of VMsVM are inputted.

Then we estimate the execution time RTVMti
ti of each workflow task

ti(ti ∈ T) on every type of VM VMi VMi∈VM
�

) according to Equation

1, and transfer time TTei , j between tasks is calculated according

to Equation 2.

The starting time value STti has 2 cases. If the task has no parent

tasks, it can start as soon as the VM assigned to the task is idle. Other-

wise, the task starts after the parent tasks finished and the output data

are transferred. Furthermore, if the VM is still busy, the starting time

has to be delayed until the VM is enabled. And in our algorithm, if 2

tasks allocated on the same VM have the same start time, the VM will

process the task with smaller size. The ending time value ETti is
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calculated by Equation 4 based on the starting time and execution time

RTVMti
ti . After a task has been scheduled, we need to update the VS and

the TS to set the task ti as scheduled and the time period between STti

and ETti as busy for VMti. The process continues until all tasks having

been scheduled.
5.3 | Initial population

For a scientific workflow, the execution time of the tasks in the CP

makes more influence on the total execution time of a workflow, while

the financial execution cost of these tasks is a small part of the total

execution cost. So allocating these tasks to the high‐performance

VMs will decrease the total execution time greatly while having just

a little impact on the total financial execution cost.

The diversity of initial population impacts the performance of GA

greatly, but most GAs generate the initial population randomly. To

improve the solution quality and convergence speed, we generate

one‐fifth of the initial population based on CP7 and assign these tasks

in CP to the VMs with high processing capacity. The tasks in the other

one‐fifth of the initial population are allocated to the VMs, which have

the lowest price. The rest of the population is produced in random.

Figure 4 shows the framework of CGA2. We first initialize 2

types of populations, where Population2 is used to adapt crossover

and mutation probabilities for Population1 to find decision solutions.
In this paper, the evolution of Population2 is an unconstrained opti-

mization problem, which does need penalty function, while Popula-

tion1 uses an adaptive penalty function to transform the

constrained workflow scheduling problem as an unconstrained opti-

mization one. The initial population scheme used in Population1 is

depicted in Section 5.3, and Population2 adopts the random

method. Each subpopulation Population1 , j in Population1 will evolve

for G1 iterations simultaneously, and the best M2 individuals from

the M2 subpopulations will be used to assess the corresponding

individual in Population2. Population2 will evolve for G2 iterations

to find the best crossover and mutation probability factor and the

best decision‐making solution.
6 | PERFORMANCE EVALUATION

To evaluate the performance of CGA2 in addressing the problem of sci-

entific workflow scheduling in clouds, we use the WorkflowSim frame-

work supported by CloudSim to simulate a cloud environment. The

simulated workflows are 4 famous scientific workflows—Epigenomics,

Montage, Inspiral, and CyberShake25,26—which are widely applied for

performance measurement of scheduling algorithms in the

WorkflowSim.27,28 Each of these workflows has different structures

as seen in Figure 5.10

We use related approaches for constrained optimization problem,

such as the Random, Heterogeneous Earliest Finish Time (HEFT),29 the

GA,10 and the PSO for deadline‐constrained cloud scientific workflow

scheduling,9 as a baseline to evaluate our approach.

The Random is an algorithm that assigns the ready tasks to an idle

VM randomly. The HEFT is a scheduling algorithm that gives higher

priority to the workflow task, which has a higher rank value. This rank

value is calculated by using average execution time for each task and

average communication time between resources of 2 successive tasks,

where the tasks in the CP have higher rank values. Then, it sorts the

tasks in a decreasing order of their rank values, and the task with a

higher rank value is given higher priority. In the resource selection

phase, tasks are scheduled in the order of their priorities, and each task

is assigned to the resource that can complete the task at the earliest

time. We set |Tx| as the size of task Tx and R as the set of resources

(VMs) available with average processing power Rj j ¼ ∑n
i¼1

Rij j	
n , and

the average execution time of the task is defined as E Txð Þ ¼ Txj j
Rj j .

Let Txy be the size of data to be transferred between task Tx and Ty

and β be the bandwidth between each VM. Thus, the average data

transfer time for the task is defined as TTx , y = Txy/β. E(Tx) and TTx , y

are used to calculate the rank of a task. Rank value is calculated as

follows:

rank Txð Þ ¼
E Txð ÞTx is an exit task

E Txð Þ þ
max

Ty∈child Txð Þ
TTx;y þ rank Tyð Þ� �

otherwise
:

8><>: (16)

A workflow is represented as a directed acyclic graph, and the rank

values of the tasks in HEFT are calculated by traversing the task graph

in a breadth‐first search manner in the reverse direction of task



FIGURE 4 Flow chart of CGA2 (see He and Wang16). GA indicates genetic algorithm
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dependencies (ie, starting from the exit tasks). The HEFT algorithm

generates schedules based on VMs and tasks and does not vary with

constraints.

In our experiments, we model an IaaS provider offering a single

data center and 5 types of VMs. The VM configurations are based on

current Amazon EC2 offerings and are presented in Table 2. We set

processing capacity of each type of VMs based on the work of

Ostermann et al.30

The experiments are conducted by using 4 different deadlines.

These deadlines lie between the slowest and fastest runtimes. The

slowest runtime is obtained by using a single VM with the average pro-

cessing capacity of all VMs to execute all tasks. And the fastest

runtimes are obtained by assigning the highest processing capacity

VM to the ready tasks. To estimate each of the 4 deadlines, we divide

the difference between the fastest and slowest times by 10 to get an

interval size. The first deadline is the slowest runtime minus 1 interval

size to the fastest deadline, as to the second one, we minus 4 interval

sizes. The third is the fastest runtime adding 2 interval sizes to the

slowest deadline, and the last one is the fastest runtime adding 1

interval size.

For the testing, the parameters of CGA2 are set as follows:

M1 = 200, G1 = 100, M2 = 50, and G2 = 20. To compare the results, we

consider the average workflow total execution cost and total execution

time after running each experiment 30 times. All the experiments are

performed on computers with Inter Core i5‐4570S CPU (2.9 GHz and

8‐GB RAM).
6.1 | Deadline Constraint Evaluation

In this section, we analyze the algorithms in terms of meeting the

user's defined deadlines. We have compared the deadline meeting per-

centages for each scientific workflow under different deadlines as

shown in Figure 6.

For the Epigenomics workflow, HEFT meets all of the deadlines.

Random algorithm meets deadlines 1 and 2 at 10% and 3.3%, respec-

tively, and completely fails to meet deadlines 3 and 4. The GA and

PSO meet deadlines 1 and 2 at 100%, but when the constraints

become strict, the rates become less and less. For deadline 3, the con-

straint meeting rates for the 2 evolutionary algorithms are 93% and

73.3%, respectively, and for deadline 4, the rates are 26.7% and

13.3%. As to our proposed CGA2 algorithm, when the constraints

become stricter, CGA2 algorithm can still find excellent solutions in

terms of constraints meeting. The deadline meeting rates for first 3

deadlines are 100%, and the deadline meeting rate is 80% for the last

deadline constraint. The results for Montage application again show

that HEFT meets all of the deadlines, and it is much better than that

of other algorithms. In Montage, Random algorithm obtains results

similar to those obtained in Epigenomics, and it meets all deadline con-

straints in the lowest rates. And the GA‐ and PSO‐based algorithms

perform well just when the deadline is relaxed like in deadlines 1 and

2. CGA2 can still find excellent solutions in terms of constraints meet-

ing when the constraints become stricter. The meeting rates in differ-

ent constraints are 100%, 100%, 100%, and 60%.



TABLE 2 Types of virtual machines used in the experiments

Name EC2 Units Processing Capacity Cost per Hour ($)

m1.small 1 44 0.03

m1.large 4 176 0.12

m1.xlarge 8 352 0.24

c1.medium 5 220 0.06

c1.xlarge 20 880 0.44

FIGURE 5 Structures of the 4 different workflows used in the experiments. A, Epigenomics. B, Montage. C, Inspiral. D, CyberShake
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The results of meeting rate for Inspiral and CyberShake are much

like those of the above 2 workflows. The Random algorithm could

hardly get feasible solutions under all constraints, while the HEFT gets

100% meeting rates under all constraints. As to the 3 evolutionary

approaches, they perform similarly under the first 2 relaxed con-

straints, while our proposed algorithm obviously performs much better

than the other 2 evolutionary algorithms. A possible explanation for

these results revolves around the following: HEFT always assigns tasks

with VMs that make the end time at a minimum level, and it considers

the entire workflow rather than focusing on only unmapped indepen-

dent tasks at each step to assign priorities to tasks. But it gives no con-

cern to the cost and constraints. Random algorithm assigns tasks with

VMs randomly, which is very hard to satisfy user's constraints. As to 2

evolutionary algorithms GA and PSO, they simply handle the

constrained optimization problem, which just gives a static penalty

function or even excludes the solutions that violate the constraints in
the evolutionary process, and it would lead to a premature conver-

gence or a false direction to the infeasible region.
6.2 | TET Evaluation

As shown in Figure 7, we measured the average of total execution time

TET (also called as makespan) for each workflow under different con-

straints (red line is the TET constraint). We can see that in the

Epigenomics workflow, the HEFT approach has the lowest average

makespan under every deadline constraints, and the Random has the

worst performance. The GA and the PSO have a good performance

in the relaxed constraints like deadlines 1 and 2. And when the con-

straints become stricter, they perform poorly. As to our proposed

CGA2, it shows a better performance than both the GA and the PSO,

especially in the strict constraints. In the Montage workflow case, the

HEFT still has the best average makespan value while the Random is

the worst in terms of total execution time. In deadlines 1 and 2, the

mean of total execution time (TET) for the GA, PSO, and CGA2 is less

than deadlines, while the average TET for these algorithms in the last

constraints is above the deadline values.

In the Inspiral and CyberShake workflows, our proposed algorithm

CGA2 still has better TET results than the other 2 evolutionary algo-

rithms. These results are in line with those analyzed in the deadline‐

constraint evaluation section, from which we were able to conclude

that HEFT algorithm can obtain the lowest total execution time value



FIGURE 6 Deadlines meeting percentages for each scientific workflow. A, Epigenomics. B, Montage. C, Inspiral. D, CyberShake. GA indicates
genetic algorithm; HEFT, Heterogeneous Earliest Finish Time; PSO, particle swarm optimization

FIGURE 7 Average of TET (dash line) under different constraints (solid line) for 4 workflows. A, Epigenomics. B, Montage. C, Inspiral. D,
CyberShake. GA indicates genetic algorithm; HEFT, Heterogeneous Earliest Finish Time; PSO, particle swarm optimization

LIU ET AL. 9



10 LIU ET AL.
for workflows, that Random algorithm is not efficient in meeting the

deadlines, and that the normal GA and PSO cannot find excellent solu-

tions when the constraints become stricter. On the contrary, CGA2

exhibits a larger makespan variation, which is expected as it can find

an excellent solution for constrained optimization problem in a very

large and chaotic search space.
6.3 | TEC Evaluation

The average total execution costs generated from the above algo-

rithms for each of the workflows are displayed in Figure 8. We also

give the mean of TET and deadlines meeting rates obtained in the for-

mer section, as the algorithms should be able to generate a cost‐effi-

cient scheme but not at the expense of a long execution time. It is

unavailable for an algorithm to run on the lower cost without meeting

the deadlines. The mean of TEC, the mean of TET, and the meeting

rate for each workflow under different constraints are presented in

Table 3.

For the Epigenomics workflow, HEFT total execution time is

still the lowest of the 4 different constraints, but its total execu-

tion cost is higher than that of evolutionary algorithms. In these

experiments, CGA2 gets the lowest cost under each deadline, which

shows that the optimizing capacity of our proposed algorithm is

better than that of other previous evolutionary algorithms espe-

cially under the strict deadlines. From the table, we can also find

that when the constraints become stricter, the solutions obtained

by the GA and PSO not only fail to meet deadlines but also
FIGURE 8 TEC generated by above algorithms under different constraints f
become much more costly. It shows that an inferior penalty func-

tion would lead the populations to premature and infeasible

sections.

In the Montage workflow, HEFT total execution time is still

the lowest for the 4 different constraints, but its total execution

cost is higher than that of evolutionary algorithms. A possible

explanation for this might be that evolutionary algorithms lease

VMs with lower price so as to minimize the total execution cost.

What is more, the tasks are relatively small in Montage workflow,

which means that the machines in the HEFT scheme are only

running for a small amount of time but are charged for the full bill-

ing period, and choosing a higher processing capacity VM means

much more cost.

Among the above algorithms complying with the deadline con-

straint, GA and PSO can obtain the low cost schedules on relaxed

deadline, but when the constraints become strict, the solutions gener-

ated by them are very poor, while the CGA2 can still get excellent solu-

tions in terms of the TEC meeting deadlines under strict constraints.

From the results, it is clear that the evolutionary algorithms based

approaches perform better than HEFT in terms of cost. And the

CGA2 can get an excellent solution without violating the constraints

when the deadline becomes strict.

The TEC results of 5 algorithms in the Inspiral and CyberShake

workflows are similar to those of the previous workflows, which

again show that CGA2 could always find the best solutions in terms

of TEC, especially under the strict constraints. We can observe

from Figure 8C and D that the GA and PSO with static penalty
or 4 workflows. A, Epigenomics. B, Montage. C, Inspiral. D, CyberShake



TABLE 3 Performance comparison of algorithms under different constraints

Workflow Algorithm Mean 95% CI Mean Meeting
Rate (%)

Mean 95% CI Mean Meeting
Rate (%)TEC TEC TET TEC TEC TET

Deadline 1 Deadline 2

Epigenomics Random 100.35 [40.2, 160.5] 98 475 10 100.35 [40.2, 160.5] 102 099 3.3
HEFT 35.12 [35.12, 35.1] 13 916 100 35.10 [35.12, 35.12] 13 916 100
GA 22.73 [12.9, 32.5] 20 743 100 32.98 [12.5, 54.5] 25 892 100
PSO 21.15 [9.2, 33.1] 36 140 100 41.55 [8.1, 85.1] 31 170 100
CGA2 17.95 [7.2, 28.7] 20 919 100 20.38 [10.7, 20.1] 28 404 100

Montage Random 52.56 [24.4, 80.7] 1233.3 90 52.56 [24.38, 80.74] 1233.3 40
HEFT 18.65 [18.7, 18.7] 173.45 100 18.65 [18.65, 18.65] 173.45 100
GA 4.03 [2.45, 5.11] 1806.2 100 3.98 [2.33, 5.63] 1521.0 100
PSO 13.7 [6.3, 21.1] 1922 100 16.21 [10.4, 22.0] 1315.6 100
CGA2 3.64 [2.43, 4.85] 1362 100 4.82 [3.05, 6.60] 1082 100

Inspiral Random 52.56 [6.93, 7.82] 32 762.0 90 52.56 [24.38, 80.74] 32 762 40
HEFT 9.83 [9.83, 9.83] 4783.56 100 9.83 [9.83, 9.83] 4783.5 100
GA 4.96 [4.64, 5.27] 8058.10 100 5.33 [5.16, 5.50] 8189.0 100
PSO 4.24 [4.13, 4.35] 12 900.0 100 4.52 [4.40, 4.65] 10 610 100
CGA2 4.94 [4.63, 5.25] 8678.10 100 5.54 [5.38, 5.69] 7129.7 100

CyberShake Random 9.8000 [9.38, 10.22] 4130.90 13.3 9.8000 [9.38, 10.22] 4130.90 0
HEFT 8.86 [8.86, 8.86] 601 100 8.86 [8.86, 8.86] 601.00 100
GA 4.31 [3.85, 4.78] 1776.80 100 4.6980 [4.11, 5.28] 1567.40 100
PSO 3.41 [3.04, 3.77] 2133.00 100 3.7373 [3.45, 4.02] 1858.00 100
CGA2 4.15 [3.91, 4.39] 1767.50 100 4.9487 [4.43, 5.47] 1483.70 100

Deadline 3 Deadline 4

Epigenomics Random 98.37 [40.2, 160.5] 98 475 0 87.43 [40.2, 160.5] 110 509 0
HEFT 35.12 [35.12, 35.1] 13 916 100 35.12 [35.12, 35.12] 13 916 100
GA 46.98 [20.8, 73.6] 20 743 93.3 97.69 [54.2, 141.3] 22 745 73.3
PSO 80.28 [28.5, 132.1] 36 140 26.7 124.16 [65.9, 184.4] 76 206 6.7
CGA2 23.06 [15.2, 30.9] 20 919 100 25.28 [11.7, 38.8] 16 807 80

Montage Random 52.56 [24.38, 80.7] 1233.3 10 52.56 [24.38, 80.74] 1233.3 0
HEFT 18.65 [18.65, 18.7] 173.45 100 18.65 [18.65, 18.65] 173.45 100
GA 13.6 [8.64, 18.62] 486.4 80 21.65 [11.63, 31.7] 779.5 20
PSO 28.9 [16.8, 40.1] 611.6 70 41.6 [35.7, 46.5] 1085.5 10
CGA2 5.87 [4.05, 7.69] 448.9 100 18.9 [8.9, 30.9] 435 60

Inspiral Random 52.56 [24.4, 80.7] 32 762.0 10 52.56 [24.38, 80.74] 32 762 0
HEFT 9.83 [9.83, 9.83] 4783.5 100 9.83 [9.83, 9.83] 4783 100
GA 9.99 [9.25, 10.73] 6233.3 93.3 11.457 [10.0, 12.9] 6803.7 33.3
PSO 6.77 [6.42, 7.13] 18 650.0 73.3 8.1353 [7.02, 9.24] 28 300 16.6
CGA2 6.46 [6.21, 6.71] 6247.6 100 6.6580 [6.31, 7.00] 5504.5 96.7

CyberShake Random 9.8000 [9.38, 10.22] 4130.90 0 9.8000 [9.38, 10.22] 4130 0
HEFT 8.86 [8.86, 8.86] 601.00 100 8.86 [8.86, 8.86] 601.00 100
GA 6.4400 [6.19, 6.68] 922.96 100 10.796 [8.82, 12.77] 922.96 86.7
PSO 4.8933 [4.56, 5.22] 1200.00 100 25.001 [22.5, 27.47] 1200.0 33.3
CGA2 6.3680 [6.04, 6.69] 815.99 100 7.4060 [6.84, 7.96] 815.99 100

Abbreviations: GA, genetic algorithm; HEFT, Heterogeneous Earliest Finish Time; PSO, particle swarm optimization.
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function have a rapid increase in terms of TEC when the con-

straints get stricter, while our algorithm is able to maintain a similar

level. What is more, even though the PSO with static penalty func-

tion could get better TEC results than CGA2 in the relaxed con-

straints, it still could not get satisfactory solutions in the strict

constraints.

From the above discussion, the following conclusions can be

drawn from the experiments: the Random algorithm fails to meet

deadlines in most cases, whereas HEFT could get the lowest

makespan, which always assigns the highest processing capacity

VMs to ready tasks. While comparing with HEFT, the evolutionary

algorithms are capable of generating cheaper schedules and hence

outperform HEFT in terms of cost optimization. And compared

with GA and PSO with static penalty functions, our proposed algo-

rithm CGA2 can handle better the constrained optimization problem

of scientific workflow scheduling in clouds and is still able to find

feasible solutions under strict user's deadline requirements.
7 | CONCLUSION AND FUTURE WORK

In this paper, a CGA with adaptive penalty function (CGA2) for

constrained scientific workflow scheduling in clouds is proposed.

The common drawback of existing evolutionary algorithms is the

necessity of defining problem‐specific parameters of penalty func-

tion for constrained optimization problem. And these algorithms

are also static and lead to premature convergence. To address

these problems, our proposed algorithm designs an adaptive

penalty function without any parameter tuning and is easy to

implement.

This approach could effectively exploit the information hidden

in infeasible individuals, which sets the proper penalty rule for

the individuals at different stages of the evolutionary process. In

addition, our proposed algorithm CGA2 applies adaptive crossover

and mutation probabilities based on the coevolution and generates

the initial population according to CP, which are efficient for
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preventing premature and improving deadline meeting for workflow

scheduling. Experiments demonstrate that our solution has an over-

all better performance than the state‐of‐the‐art algorithms Random,

HEFT, GA, and PSO. The CGA2 succeeds with high rate as HEFT,

which aims to minimize the makespan without considering the

cost. Furthermore, CGA2 could produce schedules with lower total

executing cost and meets the deadlines under strict constraints,

while GA and PSO could not succeed easily.

Our future work will use multiobjective evolutionary algorithm to

solve the cloud resource scheduling problem and will take into account

the load balance and task failures. Meanwhile, we will extend the

resource model to consider the data transfer cost between data

centers.
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