
Cluster Comput (2010) 13: 335–347
DOI 10.1007/s10586-010-0131-x

A cost-benefit analysis of using cloud computing to extend
the capacity of clusters

Marcos Dias de Assunção · Alexandre di Costanzo ·
Rajkumar Buyya

Received: 6 November 2009 / Accepted: 16 March 2010 / Published online: 3 April 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we investigate the benefits that or-
ganisations can reap by using “Cloud Computing” providers
to augment the computing capacity of their local infrastruc-
ture. We evaluate the cost of seven scheduling strategies
used by an organisation that operates a cluster managed by
virtual machine technology and seeks to utilise resources
from a remote Infrastructure as a Service (IaaS) provider to
reduce the response time of its user requests. Requests for
virtual machines are submitted to the organisation’s cluster,
but additional virtual machines are instantiated in the remote
provider and added to the local cluster when there are insuf-
ficient resources to serve the users’ requests. Naïve schedul-
ing strategies can have a great impact on the amount paid by
the organisation for using the remote resources, potentially
increasing the overall cost with the use of IaaS. Therefore,
in this work we investigate seven scheduling strategies that
consider the use of resources from the “Cloud”, to under-
stand how these strategies achieve a balance between per-
formance and usage cost, and how much they improve the
requests’ response times.

This work is partially supported by research grants from the
Australian Research Council (ARC) and Australian Department of
Innovation, Industry, Science and Research (DIISR). Marcos’ Ph.D.
research was partially supported by National ICT Australia.

M.D. de Assunção (�)
INRIA RESO/LIP, École Normale Supérieure de Lyon, 46, allée
d’Italie, 69364 Lyon Cedex 07, France
e-mail: marcos.dias.de.assuncao@ens-lyon.fr

A. di Costanzo · R. Buyya
The University of Melbourne, Melbourne, Victoria, Australia

A. di Costanzo
e-mail: adc@csse.unimelb.edu.au

R. Buyya
e-mail: raj@csse.unimelb.edu.au

Keywords Cloud computing · Load sharing · Job
scheduling · Backfilling

1 Introduction

Managing and supplying computational resources to user
applications is one of the main challenges for the high per-
formance computing community. To manage resources ex-
isting solutions rely on a job abstraction for resource con-
trol, where users submit their applications as batch jobs to
a resource management system responsible for job schedul-
ing and resource allocation. This usage model has served
the requirements of a large number of users and the ex-
ecution of numerous scientific applications. However, this
usage model requires the user to know very well the envi-
ronment on which the application will execute. In addition,
users can sometimes require administrative privileges over
the resources to customise the execution environment by up-
dating libraries and software required, which is not always
possible using the job model.

The maturity and increasing availability of virtual ma-
chine technologies has enabled another form of resource
control based on the abstraction of containers. A virtual ma-
chine can be leased and used as a container for deploying
applications [28]. Under this scenario, users lease a num-
ber of virtual machines with the operating system of their
choice; these virtual machines are further customised to pro-
vide the software stack required to execute user applications.
This form of resource control has allowed leasing abstrac-
tions that enable a number of usage models, including that
of batch job scheduling [33].

The creation of customised virtual machine environments
atop a physical infrastructure has enabled another model re-
cently known as “Cloud Computing” [2, 38]. Based on the

mailto:marcos.dias.de.assuncao@ens-lyon.fr
mailto:adc@csse.unimelb.edu.au
mailto:raj@csse.unimelb.edu.au

336 Cluster Comput (2010) 13: 335–347

economies of scale and recent Web and network technolo-
gies, commercial resource providers, such as Amazon Inc.,
aim to offer resources to users in a pay-as-you-go man-
ner. These Cloud providers, also known as Infrastructure
as a Service (IaaS) providers, allow users to set up and
customise execution environments according to their appli-
cation needs. Previous work has demonstrated how Cloud
providers can be used to supply resources to scientific com-
munities. Deelman et al. [9] demonstrated the cost of using
Cloud providers to supply the needs for resources of data
intensive applications. Palankar et al. [27] have shown that
Grid computing users can benefit from mixing Cloud and
Grid infrastructure by performing costly data operations on
the Grid resources while utilising the data availability pro-
vided by the Clouds.

In this work, we investigate whether an organisation
operating its local cluster can benefit from using Cloud
providers to improve the performance of its users’ requests.
We evaluate seven scheduling strategies suitable for a local
cluster that is managed by virtual machine based technol-
ogy to improve its Service Level Agreements (SLAs) with
users. These strategies aim to utilise remote resources from
the Cloud to augment the capacity of the local cluster. How-
ever, as the use of Cloud resources incurs a cost, the problem
is to find the price at which this performance improvement
is achieved. We aim to explore the trade-off between perfor-
mance improvement and cost.

We have implemented a system that relies on virtuali-
sation technology for enabling users to request virtual ma-
chines from both the local cluster and the Cloud to run ap-
plications. In this work, we evaluate via simulation seven
strategies for improving scheduling performance through
the use of a Cloud provider. In summary, the contributions
of this work are to:

• Describe a system that enables an organisation to augment
its computing infrastructure by allocating resources from
a Cloud provider.

• Provide various scheduling strategies that aim to min-
imise the cost of utilising resources from the Cloud
provider.

• Evaluate the proposed strategies, considering different
performance metrics; namely average weighted response
time, job slowdown, number of deadline violations, num-
ber of jobs rejected, and the money spent for using the
Cloud.

The rest of this paper is organised as follows. In Sect. 2
we provide the background on virtual machines, Cloud com-
puting, and scheduling. Then, we present the seven schedul-
ing strategies for redirecting requests from the cluster to the
Cloud in Sect. 3. Section 4 describes the system design.
Next, Sect. 5 shows the considered experimental scenario
and reports the performance evaluation of the investigated

strategies. Related work is discussed in Sect. 6 whereas con-
clusions are presented in Sect. 7.

2 Background and context

This work considers the case where an organisation manages
a local cluster of computers through virtual machine tech-
nology to supply its users with resources required by their
applications. The scenario, depicted in Fig. 1, can also repre-
sent a centre that provides computing resources to scientific
applications or a commercial organisation that provisions re-
sources to its business applications. The organisation wants
to provision resources for its user applications in a way that
guarantees acceptable response time.

The resources of the local cluster are managed by a Vir-
tual Infrastructure Engine (VIE) such as Open Nebula [14]
and Eucalyptus [26]. The VIE can start, pause, resume, and
stop Virtual Machines (VMs) on the physical resources of-
fered by the cluster. The scheduling decisions at the cluster
are performed by the Scheduler, which leases the site’s vir-
tual machines to the users. The scheduler also manages the
deployment of VMs on a Cloud Provider according to pro-
visioning strategies, which are detailed in the next section.

2.1 Virtualisation technologies

The increasing availability of VM technologies has enabled
the creation of customised environments on top of physi-
cal infrastructures. The use of VMs in distributed systems
brings several benefits such as: (i) server consolidation, al-
lowing workloads of several under-utilised servers to be
placed in fewer machines; (ii) the ability to create VMs to
run legacy code without interfering in other applications’
APIs; (iii) improved security through the creation of sand-
boxes for running applications with questionable reliabil-
ity; (iv) dynamic provision of VMs to services, allowing re-
sources to be allocated to applications on the fly; and (v) per-
formance isolation, thus allowing a provider to offer some
levels of guarantees and better quality of service to cus-
tomers’ applications.

Existing systems based on virtual machines can man-
age a cluster of computers by enabling users to create vir-
tual workspaces [21] or virtual clusters [6, 14, 15] atop the
actual physical infrastructure. These systems can bind re-
sources to virtual clusters or workspaces according to the
demands of user applications. They also provide an inter-
face through which the user can allocate virtual machines
and configure them with the operating system and software
of choice. These resource managers allow the user to cre-
ate customised virtual clusters using shares of the physical
machines available at the site.

Virtualisation technology minimises some security con-
cerns inherent to the sharing of resources among multiple

Cluster Comput (2010) 13: 335–347 337

Fig. 1 The resource
provisioning scenario

computing sites. Therefore, we utilise virtualisation soft-
ware in our system design, described in Sect. 4, because ex-
isting cluster resource managers relying on virtual machines
can provide the building blocks, such as availability infor-
mation, required for the creation of virtual execution envi-
ronments. The creation of execution environments compris-
ing multiple computing sites is our long-term goal. In addi-
tion, relying on virtual machines eases deploying execution
environments on multiple computing sites as the user appli-
cation can have better control over software installed on the
resources allocated from the sites without compromising the
operation of the hosts’ operating systems.

2.2 Infrastructure as a service

Virtualisation technologies have also facilitated the realisa-
tion of new models such as Cloud Computing or IaaS. The
main idea is to supply users with on-demand access to com-
puting or storage resources and charge fees for their usage.
In these models, users pay only for the resources they utilise.
A key provider of this type of on-demand infrastructure is
Amazon Inc. with its Elastic Compute Cloud (EC2) [1]. EC2
allows users to deploy VMs on Amazon’s infrastructure,
which is composed of several data centres located around
the world. To use Amazon’s infrastructure, users deploy in-
stances of pre-submitted VM images or upload their own
VM images to EC2. The EC2 service utilises the Ama-
zon Simple Storage Service (S3), which aims at providing
users with a globally accessible storage system. S3 stores
the users’ VM images and, as EC2, applies fees based on
the size of the data and the storage time.

2.3 Scheduling and redirection strategies

The strategies investigated in this work define how the
scheduler performs the scheduling of leases and when it bor-
rows resources from the Cloud. The scheduler is divided
into two sub-scheduler modules, one managing the schedul-
ing of requests at the local cluster, hereafter also termed
the Site Scheduler, and another managing the scheduling

on the Cloud resources, termed as the Cloud scheduler. We
term a strategy or algorithm used to schedule the leases as
a scheduling strategy, and the algorithm that defines when
the scheduler borrows resources from the Cloud and which
requests are redirected to the Cloud resources as a redirec-
tion strategy. A combination of scheduling and redirection
strategies is a strategy set. As discussed later in Sect. 3,
a redirection strategy can be invoked at different times (e.g. a
job arrival or completion) in different strategy sets.

2.4 Types of user requests

In addition to the type of virtual machine required and con-
figuration details, a request r is a tuple containing at least
〈n, rt, d〉, where n specifies the number of virtual machines
required; rt is the ready time, before which the request is not
ready for execution; and d is the deadline for request com-
pletion. These parameters are sufficient to specify a wide
range of virtual machine requests. As demonstrated latter in
Sect. 5, by making rt larger than the submission time, the
user can specify deadline constrained requests that require
advance reservation of virtual machines.

The users of the infrastructure run different applications
with different computing requirements. Some applications
need resources at particular times to meet application dead-
lines, whereas other applications are not strict about the time
when they are given resources to execute as long as they are
granted the resources required. The first category of applica-
tions is termed as deadline-constrained whereas the second
category is termed as best-effort.

For the purposes of this work, users are to be serviced
by virtual machines hosted by an individual computing site;
thus the same user request cannot receive resources from
both the Cloud provider and the organisation’s cluster. Ap-
plications that rely heavily on message passing interfaces are
generally sensitive to network delays and, despite advances
in virtualisation technology [36], may not benefit heavily
from using resources from multiple computing sites. In prac-
tice, the execution of these applications is generally confined
to an individual computer cluster.

338 Cluster Comput (2010) 13: 335–347

We will relax this assumption in future work as applica-
tions may present different communication demands. Some
applications are composed of tasks that consist of multiple
executions of the same program with different input para-
meters. These applications are often called bag-of-tasks and
the tasks generally do not require communication between
them; which makes these applications good candidates for
utilising resources from multiple sites.

3 Evaluated strategy sets

As described in Sect. 2, a strategy set consists of strategies
for scheduling requests at the site and the Cloud, and a redi-
rection strategy that specifies which requests are redirected
to the Cloud.

As scheduling strategies we use conservative [25], ag-
gressive [22], and selective backfilling [34]. With conserva-
tive backfilling, each request is scheduled (i.e. it is granted
a reservation) when it arrives in the system, and requests
are allowed to jump ahead in the queue if they do not de-
lay the execution of other requests. In aggressive backfilling,
only the request at the head of the waiting queue—called the
pivot—is granted a reservation. Other requests are allowed
to move ahead in the queue if they do not delay the pivot.
Selective backfilling grants reservations to requests that have
waited long enough in the queue. Under selective backfilling
a request is granted a reservation if its expected slowdown
exceeds a threshold. The expected slowdown of a request r

is also called eXpansion Factor (XFactor) and is given by (1)

XFactor = (wait time + run time)/run time. (1)

In fact, we use the Selective-Differential-Adaptive
scheme proposed by Srinivasan et al. [34], which lets the
XFactor threshold be the average slowdown of previously
completed requests.

The following strategy sets are used for scheduling re-
quests that arrive at the organisation’s cluster:

Naïve: both local Site and Cloud schedulers use conserv-
ative backfilling to schedule the requests. The redirection al-
gorithm is executed at the arrival of each job at the site. If the
site scheduler cannot start a request immediately, the redi-
rection algorithm checks whether the request can be started
immediately using Cloud resources. If the request can start
on the Cloud resources, then it is redirected to the Cloud,
otherwise it is placed in the site’s waiting queue.

Shortest queue: jobs at the site’s cluster are scheduled in
a First-Come-First-Served (FCFS) manner with aggressive
backfilling [22]. The redirection algorithm executes as each
job arrives or completes, and computes the ratio of virtual
machines required by requests currently waiting in the queue
to the number of processors available, similar to the work of
England and Weissman [12]. If the Cloud’s ratio is smaller

than the cluster’s, the redirection algorithm iterates the list
of waiting requests and redirects requests until both ratios
are similar.

Weighted queue: this strategy is an extension of the Short-
est Queue strategy. As each job arrives or completes, the
scheduler computes the number of virtual machines required
by waiting requests on the cluster and how many virtual ma-
chines are in execution on the Cloud. The site scheduler then
computes the number of VMs that can be started on the
Cloud, num_vms, as the minimum between the number of
VMs demanded by the site’s requests and the Cloud’s VM
limit, and redirects requests to the Cloud until num_vms is
reached.

Selective: the local site uses the selective backfilling
scheme described earlier. As each job arrives or completes,
the scheduler checks which requests can be started, then
starts them. Using the same approach based on queue ra-
tios used in the Shortest Queue strategy, the scheduler then
computes the ratios for the cluster and the Cloud. If the ra-
tios are different, the algorithm iterates the list of waiting re-
quests and checks their XFactors. For each waiting request,
if the expansion factor exceeds the threshold, the algorithm
checks the potential start time for the request at both the
Cloud and the site. The algorithm finally makes a reserva-
tion at the place that provides the earliest start time.

We also investigate strategies to schedule deadline con-
strained requests using resources from the site and the Cloud
provider. The additional deadline-aware strategy sets are:

Conservative: both local site and Cloud schedule requests
using conservative backfilling. As each request arrives, the
scheduler checks if the site can meet the request’s dead-
line. If the deadline cannot be met, the scheduler checks
the availability on the Cloud. If the Cloud can meet the re-
quest’s deadline, then the request is scheduled on the Cloud
resources. If the request deadline cannot be met, the sched-
uler schedules the request on the local site if it provides a
better start time than the Cloud. Otherwise, the request is
redirected to the Cloud.

Aggressive: both local site and Cloud use aggressive
backfilling to schedule requests. Similarly to the work of
Singh et al. [32], as each request arrives the scheduler builds
a tentative schedule for currently waiting requests. Using ag-
gressive backfilling for building the tentative schedule, the
scheduler sorts the requests applying an Earliest Deadline
First scheme and checks whether the acceptance of the ar-
riving request would break any request deadline. If there are
no potential deadline violations, the request is scheduled lo-
cally; otherwise, a tentative schedule is built for Cloud re-
sources. If the request does not break deadlines of requests
scheduled to use the Cloud, the request is served with re-
sources from the Cloud provider. If the request deadline can-
not be met, the scheduler schedules the request using the lo-
cal site’s resources if they provide a better start time than the

Cluster Comput (2010) 13: 335–347 339

Cloud. Otherwise the request is served by resources from the
Cloud.

Conservative with reservation support: both local site
and Cloud schedule requests using conservative backfilling
with support for advance reservation of resources. As each
request arrives, the scheduler checks whether it is a best-
effort or reservation request. In the first case, the request is
placed in the local site. Otherwise, for an advance reserva-
tion request the scheduler first checks if the site can provide
the resources during the required time-frame. If there are
not resources available during the requested time-frame, the
scheduler checks the resource availability on the Cloud. The
request is then scheduled on the Cloud if it can provide the
resources required; otherwise the reservation request is re-
jected.

Although as of writing of this paper some Cloud pro-
viders do not support advance reservation, that does not im-
pact our system because reservations are managed by an en-
tity (i.e. Gateway) that uses the Cloud API to start and stop
virtual machines when reservations commence or finish. The
assumption of this work is that the Cloud will provide the re-
sources required when reservations are enforced.

4 System design

In this section, we describe briefly the design of the Inter-
Grid Gateway (IGG), which is analogous to the scheduler
and uses a VIE to enforce virtual machine leases granted to
users. The names of the components derive from our previ-
ous work on the interconnection of computational Grids [8].
A complete description of the implementation and an evalu-
ation of the system is available elsewhere [10].

IGGs can have peering relationships that define under
which circumstances they borrow resources from one an-
other (i.e. redirection strategies). These peering relation-
ships specify when an IGG seeks to use resources from an-
other IGG and how the IGG evaluates a request for resources
from another IGG. The IGG has been implemented in Java,
and a layered view of its components is presented in Fig. 2.

The central component of the IGG is the Scheduler; in
charge of serving users’ requests, handling reservations, and
managing start and stop of virtual machines when jobs are
scheduled. The scheduler maintains the resource availability
information and interacts with the Virtual Machine Manager
(VM Manager) for creating, starting or stopping virtual ma-
chines to fulfil the requirements of the scheduled requests.

The IGG does not share physical resources directly, but
relies on virtualisation technology to abstract them. The VM
Manager controls the deployment of virtual machines for
the IGG. The types of virtual machines available for the
IGG are described as Virtual Machine Templates, which
are analogous to computers’ configurations. A VM template

Fig. 2 Main components of the IGG

describes a type of VM and contains information such as
the number of processors or cores assigned to the VM, the
amount of memory, the kernel used to boot the operating
system, the disk image, and the price of using a VM of
this type over one hour. All available templates are stored
in the IGG’s repository. At present, users willing to request
VMs, need to specify the templates they want to use from the
repository. In addition, IGGs need to agree on the templates
in order to allow one IGG to borrow VMs from another. In
this work, we consider that the Cloud provider has a match-
ing template for each template available at the organisation’s
cluster.

The VM Manager deploys VMs on physical resources
when requested by the IGG. The scheduling strategies that
define when and which VMs are started or shut down are im-
plemented as part of the IGG’s scheduler. The VM Manager
relies on a VIE for deploying and managing VMs; the cur-
rent implementation uses Open Nebula as a VIE for virtu-
alising a physical cluster infrastructure. In addition, the VM
Manager is able to control VMs hosted by a Cloud provider
such as Amazon EC2 [1].

The Communication Module is responsible for message
passing. This module receives messages from other entities
and delivers them to the components registered as listeners.
Message-passing makes gateways loosely coupled and al-
lows for more failure-tolerant communication protocols.

5 Performance evaluation

This section describes the scenario considered for perfor-
mance evaluation, the performance metrics, and experimen-
tal results.

5.1 Experimental scenario

The evaluation of the strategies is performed by using a
discrete-event simulator [5]. We use simulation because it

340 Cluster Comput (2010) 13: 335–347

enables us to perform repeatable experiments, and the cost
incurred by performing experiments on real infrastructure
would be prohibitively expensive. To store the information
about resources available for running virtual machines, the
scheduler uses a data structure based on a red-black tree [7]
whose nodes contain the list of resources available at the
start or completion of leases. The tree is augmented by
a double-linked list connecting the sibling nodes; this list
eases the interaction for finding alternative time slots when
handling advance reservations or looking for potential start
times for requests. This data structure is based on the idea of
availability profile used in some implementations of conser-
vative backfilling [25].

For the experiments that do not involve advance reser-
vations, we model the San Diego Super Computer (SDSC)
Blue Horizon machine because job traces collected from this
supercomputer are publicly available1 and have been studied
previously [23]. The Blue Horizon machine comprises 144
nodes. The experiments with advance reservations model the
infrastructure of the Lyon site of Grid’5000.2 This site has
135 nodes and the requests submitted to it resemble requests
for virtual machines; users reserve resources and deploy sys-
tem images containing the customised operating system and
required applications. To model the workload we use traces
collected from this site containing one year of request sub-
missions.

The limit of virtual machines that the site can host is the
same as the number of nodes. In addition, in this work the
maximum number of virtual machines that can be in execu-
tion by the Cloud provider at a particular time is the same
as the maximum in the local cluster. We plan to relax this
assumption in future work.

To compute the cost of using resources from the Cloud
provider, we use the amounts charged by Amazon to run ba-
sic virtual machines at EC2 (i.e. as of writing of this paper
the rate was US$0.10 per virtual machine/hour). The exper-
iments consider only the amount charged to run VMs, but
in practise Amazon charges for the usage of other resources
such as network and storage. Other usage fees are not con-
sidered in this work because they depend on the applica-
tions’ communication and data requirements.

The operating system running on a virtual machine takes
from a few seconds to some minutes to boot, but Amazon
commences charging users when the VM process starts. The
experiments therefore consider that the booting time is al-
ready included into the request’s duration. In addition, the
experiments consider full-hours of utilisation; if a request
uses a VM for 30 minutes for example, the cost of one hour
is considered.

1http://www.cs.huji.ac.il/labs/parallel/workload/.
2http://www.grid5000.fr/.

5.2 Performance metrics

Some metrics related to requests’ response times include the
bounded job slowdown (bound = 10 seconds), hereafter re-
ferred only as job slowdown [13] and the Average Weighted
Response Time (AWRT) [16]. The AWRT measures how
long on average users wait to have their requests completed.
A short AWRT indicates that on average users do not wait
long for their requests to complete.

AWRT =
∑

j∈τk
pj · mj · (ctj − stj)

∑
j∈τk

pj · mj

. (2)

The AWRT is given by (2), where mj is the number of
virtual machines required by request j , pj is the execution
time of the request, ctj is the time of completion of the re-
quest and stj is its submission time. The resource consump-
tion (pj · mj) of each request j is used as the weight.

In order to compute the benefits of using one strategy
over another, we also compute the cost ratio between AWRT
and the amount spent in running virtual machines on the
Cloud. In addition, we measure the number of deadline vi-
olations and request rejections when we evaluate scenarios
where some requests are deadline constrained. More infor-
mation about the ratios is provided along with respective ex-
periments.

5.3 Experimental results

The first experiment evaluates the performance improve-
ment of different strategy sets by running virtual machines
on the Cloud provider and the cost of such improvement in
each case. This experiment uses a metric termed as perfor-
mance cost. The performance cost of a strategy st is given
by (3).

perf . costst = Amount spent

AWRTbase − AWRTst
∗ AWRTst, (3)

where Amount spent is the amount spent running virtual
machines on the Cloud provider, AWRTbase is the AWRT
achieved by a base strategy that schedules requests using
only the site’s resources and AWRTst is the AWRT reached
by the strategy st when Cloud resources are also utilised.
This metric aims to quantify the improvement achieved in
AWRT and its cost; the smaller the performance improve-
ment cost, the better the strategy performs. In the experi-
ments described in this section, the base strategy is FCFS
with aggressive backfilling.

For this experiment, the site’s workloads have been gen-
erated using Lublin99, here referred to as Lublin and Feit-
elson [23]. Lublin99 has been configured to generate two-
month-long workloads of type-less requests (i.e. no distinc-
tion is made between batch and interactive requests); the

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.grid5000.fr/

Cluster Comput (2010) 13: 335–347 341

maximum number of CPUs used by the generated requests
is set to the number of nodes in the cluster. This experi-
ment evaluates the performance cost under different types
of workloads. In order to generate different workloads, we
modify three parameters of Lublin99’s model, one at a time.
First, we change the mean number of virtual machines re-
quired by a request (specified in log2) to log2 m − umed
where m is the maximum number of virtual machines al-
lowed in system. We vary umed from 1.5 to 3.5. The larger
the value of umed, the smaller the requests become in terms
of numbers of VMs required and consequently result in
lighter loads. The second parameter changed in the experi-
ments affects the inter-arrival time of requests at rush hours.
The inter-arrival rate of jobs is modified by setting the β of
the gamma distribution (hereafter termed barr), which we
vary from 0.45 to 0.55. As the values for barr increase, the
inter-arrival time of requests also increases. The last para-
meter impacts on the request duration by changing the pro-
portion of the first gamma in the hyper-gamma distribution
used to compute the requests runtimes. The proportion p of
the first gamma in Lublin and Feitelson’s model [23] is given
by p = pa ∗ nodes + pb. We vary the parameter pb from 0.5
to 1.0. The larger the value of pb, the smaller the duration
of the requests.

The results of this experiment are shown in Fig. 3. Each
data point is the average of 5 simulation rounds. Graphs (a),
(b) and (c) show the site’s utilisation under aggressive back-
filling scheduling when the Cloud resources are not used.
These graphs illustrate the effect of the parameter changes
on the load. Graphs (d), (e) and (f) show the performance
cost when we vary: the number of VMs required by a re-
quest, the inter-arrival interval and the request’s duration,
respectively. The higher values obtained by the naïve strat-
egy show that more money is spent to achieve an improve-
ment in AWRT, especially under heavy loads, as shown in
graph (d). From graphs (a) and (d), we also observe that the
performance cost of using the Cloud is linear with the de-
crease in number of VMs of requests except for the naïve
strategy, which is very expensive for small requests. Under
lighter loads, all strategies tend to yield the same ratio of
cost and performance. With small inter-arrival periods, all
strategies have similar performance, except the naïve strat-
egy. The naïve strategy again provides a high performance
cost, as shown in graph (e). With the variation of request
arrival time, the experiments show a limit of the perfor-
mance cost close to US $5,500. The cost increases until this
limit and then decreases, due to the increase of the request
inter-arrival time. More time between requests allows us-
ing less resources, which makes it more costly to rely on
the Cloud to improve the request response time. For smaller
inter-arrival time values, there is an important difference in
cost of performance for the naïve strategy in comparison to
other strategies. In the last part of the experiment, graphs

(c) and (f), all strategies return similar performance cost for
the same request duration variation. The performance cost is
inversely proportional to the cluster usage.

The second experiment evaluates the site using resources
from the Cloud to meet service level agreements with con-
sumers. In this experiment the requests have deadlines and
we measure the cost of reducing deadline violations, or re-
quests completing after their deadlines. The cost of reducing
deadlines using a strategy st is given by (4).

non-violation costst = amount spentst

violbase − violst
, (4)

where Amount spentst is the amount spent with Cloud re-
sources, violbase is the number of violations using a base
strategy and violst is the number of violations under the
evaluated strategy. The base policy is aggressive backfilling
sorting the jobs for scheduling and backfilling in an Earliest
Deadline First manner.

This experiment uses real job traces collected from the
SDSC Blue Horizon machine to model the workload of the
site’s cluster. As the job trace spans a period of two years,
we divide it into intervals of two months each. For each ex-
periment, we perform 5 simulation rounds using a different
workload for each round. As the deadline information is not
available in the trace, we use a Bernoulli distribution to se-
lect from the trace the requests that should have deadlines. In
this way, a request read from the job trace file has a probabil-
ity of being deadline constrained. The experiments consider
different numbers of deadline constrained requests.

To generate the request deadlines we use a technique de-
scribed by Islam et al. [20], which provides a feasible sched-
ule for the jobs. To obtain the deadlines, we perform the ex-
periments by scheduling requests on the site’s cluster with-
out the Cloud using aggressive backfilling. After that, the
deadline dj of a job j is calculated using (5):

dj =
{

stj + (taj ∗ sf), if [stj + (taj ∗ sf)] < ctj ,
ctj , otherwise,

(5)

where stj is the request j ’s submission time, ctj is its com-
pletion time, taj if the request’s turn around time (i.e. the
difference between the request’s completion and submission
times) and sf is a stringency factor that indicates how ur-
gent the deadlines are. If sf = 1, then the request’s deadline
is the completion under the aggressive backfilling scenario.
We evaluate the strategies with different stringency factors
(i.e. 0.9, 1.3 and 1.7 termed tight, normal and relaxed dead-
line scenarios respectively).

The results of this experiment are depicted in Fig. 4.
The top graphs show the amount spent using resources from
the Cloud provider to reduce the number of deadline viola-
tions. The Conservative and the Aggressive deadline strate-
gies spend smaller amounts than the remaining strategies be-

342 Cluster Comput (2010) 13: 335–347

Fig. 3 The top three graphs show the site’s utilisation using the base
aggressive backfilling strategy without Cloud resources; the bottom
three graphs show the performance cost under different workloads.
Higher values of umed result in requests requiring a larger number

of VMs. The larger the value of barr, the greater the inter-arrival time
of requests at rush hours. The time duration of the requests decrease as
the value of pb increases. Each data point is the average of 5 simulation
rounds

Fig. 4 The top graphs show the amount spent using resources from
the Cloud provider; the bottom graphs show the cost of decreasing
deadline violations under different numbers of deadline constrained

requests and different types of deadlines. Each data point is the aver-
age of 5 simulation rounds

cause they are designed to consider deadlines. Other strate-
gies, except the naïve, sort the requests according to dead-
lines; however, take into account other performance aspects
such as minimising response time when redirecting requests
to be scheduled on the Cloud. With a small proportion of

deadline constrained requests with tight deadlines, the ag-
gressive strategy had a smaller cost that the conservative
strategy. With normal deadlines and a large number of dead-
line constrained requests, the aggressive strategy spends
more than the conservative strategy.

Cluster Comput (2010) 13: 335–347 343

Fig. 5 (a) Amount spent using resources from the Cloud provider;
(b) the decrease of requests rejected. Each data point is the average of
5 simulation rounds

We decided to evaluate the aggressive deadline strategy
further in a scenario considering only the site’s resources
and a case considering the site and the Cloud. If the deadline
of a request cannot be met, the request is rejected. This ex-
periment evaluates how much the organisation would need
to spend to decrease the number of jobs rejected. The results
are summarised in Fig. 5.

Figure 5(a) shows the amount spent on the Cloud and
(b) depicts the percentage of jobs rejected when the Cloud
is used and not used. An amount of US $3,000 is spent
on the Cloud to keep the number of jobs rejected close to
zero under a case where 70% of the requests have deadlines.
With normal deadlines, the strategy did not spend more than
US $1,500 in any quantity of deadline constrained requests.

Again using traces from the SDSC Blue Horizon, this ex-
periment evaluates the amount of money spent using the
Cloud infrastructure under different scheduling strategies,
and compares the improvement of the strategies to a sce-
nario where requests were scheduled using only the site’s
resources with aggressive backfilling. Table 1 summarises
the results. All the strategies perform similarly in terms of

AWRT improvement. However, the proposed strategy set
based on selective backfilling yields a better ratio of slow-
down improvement to amount of money spent for using
Cloud resources.

The experimental results show that the cost of increasing
the performance of application scheduling is higher under a
scenario where the site’s cluster is underutilised. However,
the cost-benefit of using a naïve scheduling strategy can be
smaller than using other approaches as a large cost is in-
curred under scenarios of high system utilisation. In addi-
tion, request backfilling and redirection based on the expan-
sion factors (i.e. selective backfilling) have shown a good
ratio of slowdown improvement to amount of money spent
for using Cloud resources.

5.4 Advance reservations

The experiments discussed in this section measure the cost
of handling additional load by using the Cloud to increase
the support for reservation of resources. Thereby, we mea-
sure the cost of redirecting reservation requests to a Cloud
provider and the cost of wasting Cloud resources if the redi-
rected requests fail. As described beforehand, the experi-
ments use a trace collected from a Grid’5000 site contain-
ing one year of request submissions. We split the trace into
two-month-long periods, and we use a different part for each
simulation round. All values reported by the experiments are
averages of 5 simulation rounds.

The original request trace contains reservation and best-
effort requests. Best-effort requests do not require reserva-
tion of resources and their start times are determined by the
scheduler; the scheduler places then in the queue and starts
their execution at the earliest time when enough resources
are available; a best-effort request can be preempted to make
room for a reservation. Whilst we maintain the ratio of reser-
vation and best-effort requests in the experiments, we do not
consider preemption of requests; once the schedule of a best-
effort request is determined, it is not preempted to give room
for a reservation.

To measure the cost of increasing the support for advance
reservations, we select randomly from the trace the requests
that correspond to the additional load. That is, all the orig-
inal requests are submitted, along with requests randomly
selected from the same trace (i.e. additional load). The per-
centage of requests selected is the additional load and varies
from 0 to 100%. Furthermore, the trace contains requests
whose executions have failed due to factors such as incorrect
configuration of system images and problems with the de-
ployed application. When these requests are redirected to a
Cloud provider and the required virtual machines are started,
but not fully utilised because the application has failed, the
allocation corresponds to a wastage of resources from the
organisation’s perspective. Although we do not have details

344 Cluster Comput (2010) 13: 335–347

Table 1 Performance of the strategies using workload traces (averages of 5 simulation rounds)

Metric description Naïve Shortest queue Weighted queue Selective

Amount spent with VM instances ($) 5,478.54 5,927.08 5,855.04 4,880.16

Number of VM instances/Hours 54,785.40 59,270.80 58,550.40 48,801.60

Average weighted response time (improvement) 15,036.77 15,065.47 15,435.11 14,632.34

Overall Job slowdown (improvement) 38.29 37.65 38.42 39.70

Table 2 Cost of increasing the support for reservations (averages of 5 simulation rounds)

Additional load 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Amount spent on the Cloud ($) 77 754 1778 3034 3926 5073 6079 6931 8736 9595 10,460

Number of requests redirected 114 1032 1748 2939 4254 5795 7018 9375 11,595 14,535 16701

Load redirected (%) 0.52 5.20 11.58 19.47 23.31 29.78 32.86 35.68 45.11 48.27 52.15

Amount wasted with failures ($) 49 567 1355 2379 3044 3927 4693 5175 6653 7187 7778

about the reasons why these applications have failed in the
original execution, we attempt to measure the money spent
(or wasted) to allocate resources from the Cloud to serve
these applications.

Table 2 summarises the results. The first line shows the
amount of money spent using resources from the Cloud un-
der various additional load configurations. The second and
the third lines show respectively the number of requests redi-
rected to the Cloud and their corresponding load percentages
compared to the overall load generated. The last line shows
the amount of money (in US $) spent with requests whose
executions have failed. One can observe that all the addi-
tional load injected is redirected to the Cloud provider and
that the amount spent on the Cloud grows proportionally to
the load redirected. Furthermore, around 60% to 70% of the
money spent by using resources from the Cloud were spent
on requests whose executions have failed. As discussed be-
forehand, it is difficult to argue that all these failures re-
ported in the original log have roots on deployment issues;
and that is probably not the case. In addition, one can advo-
cate that a commercial provider would offer minimum qual-
ity of service and resource availability guarantees that could
minimise the number of failures. However, it is important
to notice that the results demonstrate that if a commercial
Cloud provider is used to extend the capacity of a local in-
frastructure, deployment of applications and load redirection
have to be planned carefully to avoid wastage of resources
and consequently waste of money.

6 Related work

Lease abstractions relying on virtual machine technology
have been proposed [19, 21, 33]. Sotomayor et al. [33] ex-

plored a lease abstraction to handle the scheduling of a com-
bination of best-effort jobs and advance reservations. Kea-
hey et al. [21] demonstrated how to create customised exe-
cution environments for a Grid community via Globus Vir-
tual Workspaces. Shirako provides a system of brokers that
enable the leasing of various types of resources including
virtual machines [19]. In addition, the number of migrations
required when the broker and a site scheduler use conflict-
ing policies has been investigated [17]. We evaluate the cost
of extending the capacity of an organisation’s cluster for im-
proving the response time of user requests.

The applicability of Amazon services for Grid computing
has been demonstrated in existing work. Palankar et al. [27]
evaluated the use of Amazon S3 for Science Grids with data-
intensive applications and concluded that Amazon S3 can be
used for some of the operations required by data-intensive
Grid applications. Although Grid applications can benefit
from using Amazon services, such as improving data avail-
ability, Palankar et al. highlighted that a balance between the
benefits of Amazon services and the cost of using Amazon’s
infrastructure should be taken into account. This balance in-
volves performing expensive operations that generate large
amounts of temporary data at the Grid infrastructure. Deel-
man et al. [9] evaluated the cost of using Amazon EC2 and
S3 services to serve the resource requirements of a scientific
application.

Existing work has shown how to enable virtual clusters
that span multiple physical computer clusters [11, 30, 31].
Emeneker et al. [11] evaluated the overhead of creating vir-
tual clusters using Xen [4] and the Moab scheduler. Vio-
Cluster [30] is a system in which a broker responsible for
managing a virtual domain (i.e. a virtual cluster) can borrow
resources from another broker. Brokers have borrowing and
lending policies that define when machines are requested

Cluster Comput (2010) 13: 335–347 345

from other brokers and when they are returned, respectively.
The resources borrowed by one broker from another are used
to run User Mode Linux virtual machines.

Systems for virtualising a physical infrastructure are also
available. Montero et al. [24] investigated the deployment of
custom execution environments using Open Nebula. They
investigated the overhead of two distinct models for start-
ing virtual machines and adding them to an execution envi-
ronment. Montero et al. [29] also used GridWay to deploy
virtual machines on a Globus Grid; jobs are encapsulated as
virtual machines. They evaluated several strategies such as
using one virtual machine execution per job, pausing the vir-
tual machine between job executions, and reusing the virtual
machine for multiple job executions. Montero et al. showed
that the overhead of starting a virtual machine is small for
the application evaluated. We use Open Nebula in the real
system implementation of our architecture.

Singh et al. [32] proposed an adaptive pricing for advance
reservations where the price of a reservation depends on how
many jobs it delays. Aggressive backfilling is used to build
a tentative schedule and test how many jobs are delayed.
We use a similar approach for request admission control in
one of our deadline-aware strategies and for deciding on the
redirection of requests to the Cloud provider.

Market based resource allocation mechanisms for large-
scale distributed systems have been investigated [39]. In this
work, we do not explore a market-based mechanism as we
rely on utilising resources from a Cloud provider that has
cost structures in place. We focus on evaluating the trade-
offs between improvement of scheduling user applications
and cost of resource utilisation. Specifically, we aim to eval-
uate the cost of performance improvements.

Several load sharing mechanisms have been investigated
in the distributed systems realm. Iosup et al. [18] proposed
a matchmaking mechanism for enabling resource sharing
across computational Grids. Wang and Morris [37] investi-
gated different strategies for load sharing across computers
in a local area network. Surana et al. [35] addressed the load
balancing in DHT-based P2P networks. Balazinska et al. [3]
proposed a mechanism for migrating stream processing op-
erators in a federated system. We evaluate the benefits and
the cost of adding resources from a Cloud provider to an
organisation’s infrastructure.

7 Conclusions

This paper evaluated the cost of improving the scheduling
performance of virtual machine requests by allocating ad-
ditional resources from a Cloud computing infrastructure.
We considered the case of an organisation that operates its
computing infrastructure, but wants to allocate additional re-
sources from a Cloud infrastructure. The experiments eval-
uated the cost of improving the performance under different

strategies for scheduling requests on the organisation’s clus-
ter and the Cloud provider. Naïve scheduling strategies can
result in a higher cost under heavy load conditions. Experi-
mental results showed that the cost of increasing the perfor-
mance of application scheduling is higher under a scenario
where the site’s cluster is under-utilised. In addition, request
backfilling and redirection based on the expansion factors
(i.e. selective backfilling) showed a good ratio of slowdown
improvement to the money spent for using Cloud resources.

In future work, we would like to study the performance
of different types of applications, such as bag-of-tasks or
SPMD running on the local cluster, on the Cloud provider,
and both at the same time. In addition, we are currently
working on an adaptive strategy that aims to optimise
scheduling performance considering the user’s budget. For
a given budget amount, the scheduler would find the best
strategy to fulfil the user’s request.

Acknowledgements We would like to thank Sungjin Choi, Suraj
Pandey, Carlos Varela, and Marco Netto for their feedback on a pre-
liminary version of this work. We carried out some experiments us-
ing traces collected from the Grid’5000 platform, an initiative from
the French Ministry of Research through the ACI GRID incentive
action, INRIA, CNRS, RENATER and other contributing partners
(http://www.grid5000.fr).

References

1. Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Kon-
winski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Za-
haria, M.: Above the clouds: A Berkeley view of Cloud comput-
ing. Technical report UCB/EECS-2009-28, Electrical Engineer-
ing and Computer Sciences, University of California at Berkeley,
Berkeley, USA, February 2009

3. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-
based load management in federated distributed systems. In: 1st
Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, USA, March 2004, pp. 197–210. USENIX
Association

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtual-
ization. In: 19th ACM Symposium on Operating Systems Princi-
ples (SOSP ’03), pp. 164–177. ACM, New York (2003)

5. Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for
Grid computing. Concurr. Comput. 14(13–15), 1175–1220 (2002)

6. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.:
Dynamic virtual clusters in a Grid site manager. In: 12th IEEE
International Symposium on High Performance Distributed Com-
puting (HPDC 2003), Washington, DC, USA, 2003, p. 90. IEEE
Computer Society, Los Alamitos (2003)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intro-
duction to Algorithms, 2nd edn. MIT Press/McGraw-Hill, Cam-
bridge/New York (2001)

8. de Assunção, M.D., Buyya, R., Venugopal, S.: InterGrid: a case
for internetworking islands of Grids. Concurr. Comput. 20(8),
997–1024 (2008)

http://www.grid5000.fr
http://aws.amazon.com/ec2

346 Cluster Comput (2010) 13: 335–347

9. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The
cost of doing science on the cloud: the montage example. In: 2008
ACM/IEEE Conference on Supercomputing (SC 2008), Piscat-
away, NJ, USA, 2008, pp. 1–12. IEEE Press, New York (2008)

10. di Costanzo, A., de Assunção, M.D., Buyya, R.: Harnessing cloud
technologies for a virtualized distributed computing infrastructure.
IEEE Int. Comput. 13(5), 24–33 (2009)

11. Emeneker, W., Jackson, D., Butikofer, J., Stanzione, D.: Dynamic
virtual clustering with Xen and Moab. In: Frontiers of High Per-
formance Computing and Networking with ISPA 2006. LNCS,
vol. 4331, pp. 440–451. Springer, Berlin/Heidelberg (2006)

12. England, D., Weissman, J.B.: Costs and benefits of load shar-
ing in the computational Grid. In: 10th International Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP ’04),
New York, USA, 2004. LNCS, vol. 3277, pp. 160–175. Springer,
Berlin/Heidelberg (2004)

13. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C.,
Wong, P.: Theory and practise in parallel job scheduling. In: Job
Scheduling Strategies for Parallel Processing (IPPS ’97), London,
UK, 1997, pp. 1–34. Springer, Berlin (1997)

14. Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente,
I.M.: OpenNEbula: the open source virtual machine manager for
cluster computing. In: Open Source Grid and Cluster Software
Conference—Book of Abstracts, San Francisco, USA, May 2008

15. Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B.,
Zhang, X.: Virtual clusters for Grid communities. In: 6th IEEE In-
ternational Symposium on Cluster Computing and the Grid (CC-
GRID 2006), Washington, DC, USA, 2006, pp. 513–520. IEEE
Comput. Soc., Los Alamitos (2006)

16. Grimme, C., Lepping, J., Papaspyrou, A.: Prospects of collabo-
ration between compute providers by means of job interchange.
In: Job Scheduling Strategies for Parallel Processing. Lecture
Notes in Computer Science, vol. 4942, pp. 132–151. Springer,
Berlin/Heidelberg (2008)

17. Grit, L., Inwin, D., Yumerefendi, A., Chase, J.: Virtual machine
hosting for networked clusters: building the foundations for ‘au-
tonomic’ orchestration. In: 1st International Workshop on Vir-
tualization Technology in Distributed Computing (VTDC 2006),
Tampa, Florida, November 2006

18. Iosup, A., Epema, D.H.J., Tannenbaum, T., Farrellee, M., Livny,
M.: Inter-operating Grids through delegated matchmaking. In:
2007 ACM/IEEE Conference on Supercomputing (SC 2007), New
York, USA, 2007, pp. 1–12. ACM, New York (2007)

19. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum,
K.G.: Sharing networked resources with brokered leases. In:
USENIX Annual Technical Conference, pp. 199–212. Berkeley,
USA, June 2006. USENIX Association

20. Islam, M., Balaji, P., Sadayappan, P., Panda, D.K.: QoPS: A QoS
based scheme for parallel job scheduling. In: 9th International
Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP ’03), Seattle, WA, USA, 2003. LNCS, vol. 2862, pp. 252–
268. Springer, Berlin (2003)

21. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual workspaces:
Achieving quality of service and quality of life in the Grids. Sci.
Program. 13(4), 265–275 (2006)

22. Lifka, D.A.: The ANL/IBM SP scheduling system. In: Workshop
on Job Scheduling Strategies for Parallel Processing (IPPS’95),
London, UK, 1995, pp. 295–303. Springer, Berlin (1995)

23. Lublin, U., Feitelson, D.G.: The workload on parallel supercom-
puters: Modeling the characteristics of rigid jobs. J. Parallel Dis-
trib. Comput. 63(11), 1105–1122 (2003)

24. Montero, R.S., Huedo, E., Llorente, I.M.: Dynamic deployment
of custom execution environments in Grids. In: 2nd International
Conference on Advanced Engineering Computing and Applica-
tions in Sciences (ADVCOMP ’08), Valencia, Spain, 2008, pp.
33–38. IEEE Comp. Soc., Los Alamitos (2008)

25. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6), 529–543
(2001)

26. Nurmi, D., Wolski, R., Crzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., Zagorodnov, D.: Eucalyptus: a technical report on
an elastic utility computing architecture linking your programs to
useful systems. Technical Report 2008-10, Department of Com-
puter Science, University of California, Santa Barbara, CA, USA
(2008)

27. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Ama-
zon S3 for science Grids: a viable solution?. In: International
Workshop on Data-Aware Distributed Computing (DADC’08) in
Conjunction with HPDC 2008, New York, NY, USA, 2008, pp.
55–64. ACM, New York (2008)

28. Ramakrishnan, L., Irwin, D., Grit, L., Yumerefendi, A., Iamnitchi,
A., Chase, J.: Toward a doctrine of containment: grid hosting with
adaptive resource control. In: 2006 ACM/IEEE Conference on
Supercomputing (SC 2006), New York, NY, USA, 2006, p. 101.
ACM, New York (2006)

29. Rubio-Montero, A., Huedo, E., Montero, R., Llorente, I.: Man-
agement of virtual machines on globus grids using GridWay. In:
IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS 2007), Long Beach, USA, March 2007, pp. 1–7.
IEEE Comput. Soc., Los Alamitos (2007)

30. Ruth, P., McGachey, P., Xu, D.: VioCluster: virtualization for dy-
namic computational domain. In: IEEE International on Cluster
Computing (Cluster 2005), pp. 1–10, Burlington, USA, Septem-
ber 2005. IEEE

31. Shoykhet, A., Lange, J., Dinda, P.: Virtuoso: a system for virtual
machine marketplaces. Technical Report NWU-CS-04-39, Elec-
trical Engineering and Computer Science Department, Northwest-
ern University, Evanston/Chicago, IL, July 2004

32. Singh, G., Kesselman, C., Deelman, E.: Adaptive pricing for re-
source reservations in shared environments. In: 8th IEEE/ACM
International Conference on Grid Computing (Grid 2007) (Austin,
USA, September 2007), pp. 74–80. ACM/IEEE, New York (2007)

33. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution
and leasing using virtual machines. In: 17th International Sympo-
sium on High performance Distributed Computing (HPDC 2008),
New York, NY, USA, 2008, pp. 87–96. ACM, New York (2008)

34. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Se-
lective reservation strategies for backfill job scheduling. In: 8th
International Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP ’02), London, UK, 2002. LNCS, vol. 2537, pp.
55–71. Springer, Berlin/Heidelberg (2002)

35. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica,
I.: Load balancing in dynamic structured peer-to-peer systems.
Perform. Eval. 63(3), 217–240 (2006)

36. Tatezono, M., Maruyama, N., Matsuoka, S.: Making wide-area,
multi-site MPI feasible using Xen VM. In: Workshop on Fron-
tiers of High Performance Computing and Networking (held
with ISPA 2006). LNCS, vol. 4331, pp. 387–396. Springer,
Berlin/Heidelberg (2006)

37. Wang, Y.-T., Morris, R.J.T.: Load sharing in distributed systems.
IEEE Trans. Comput. C-34(3), 204–217 (1985)

38. Weiss, A.: Computing in the Clouds. netWorker 11(4), 16–25
(2007)

39. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-
based resource allocation strategies for the computational Grid.
Int. J. High Perform. Comput. Appl. 15(3), 258–281 (2001)

Cluster Comput (2010) 13: 335–347 347

Marcos Dias de Assunção is a
postdoc researcher at INRIA RESO/
LIP, l’École Normale Supérieure de
Lyon. Marcos has a Ph.D. in com-
puter science and software engi-
neering by The University of Mel-
bourne, Australia. The current top-
ics of his interest include Grid re-
source management, virtual ma-
chines, and energy efficiency in
large-scale distributed systems.

Alexandre di Costanzo is a re-
search fellow at the University of
Melbourne. His research interests
are distributed computing and espe-
cially Grid computing. Di Costanzo
has a Ph.D. in computer science
from the University of Nice Sophia
Antipolis, France.

Rajkumar Buyya is a Professor of
Computer Science and Software En-
gineering at the University of Mel-
bourne, Australia.

	A cost-benefit analysis of using cloud computing to extend the capacity of clusters
	Abstract
	Introduction
	Background and context
	Virtualisation technologies
	Infrastructure as a service
	Scheduling and redirection strategies
	Types of user requests

	Evaluated strategy sets
	System design
	Performance evaluation
	Experimental scenario
	Performance metrics
	Experimental results
	Advance reservations

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

