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Abstract—One of the major challenges that cloud providers
face is minimizing power consumption of their data centers. To
this point, majority of current research focuses on energy efficient
management of resources in the Infrastructure as a Service
model and through virtual machine consolidation. However,
containers are increasingly gaining popularity and going to be
major deployment model in cloud environment and specifically in
Platform as a Service. This paper focuses on improving the energy
efficiency of servers for this new deployment model by proposing
a framework that consolidates containers on virtual machines.
We first formally present the container consolidation problem
and then we compare a number of algorithms and evaluate their
performance against metrics such as energy consumption, Service
Level Agreement violations, average container migrations rate,
and average number of created virtual machines. Our proposed
framework and algorithms can be utilized in a private cloud to
minimize energy consumption, or alternatively in a public cloud
to minimize the total number of hours the virtual machines leased.

I. INTRODUCTION

The numerous advantages of cloud computing environ-
ments, including cost effectiveness, on-demand scalability, and
ease of management, encourage service providers to adopt
them and offer solutions via cloud models. It in turn encour-
ages platform providers to increase the underlying capacity of
their data centers to accommodate the increasing demand of
new customers. One of the main drawbacks of the growth in
capacity of cloud data centers is the need for more energy to
power these large-scale infrastructures. With ever increasing
popularity of cloud computing, data centers energy consump-
tion is anticipated to double [1].

In addition to traditional cloud services—Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Soft-
ware as a Service (SaaS)—recently a new type of service,
called Containers as a Service (CaaS), has been introduced
by Google1 and Amazon Web Services. Containers can be
considered a new revolution in the cloud era since containers
are lightweight, easier to configure and manage, and can
decrease the start-up time considerably. Docker2 is a good
example of a container management system.

CaaS lies between IaaS and PaaS: while IaaS provides
virtualized compute resources and PaaS provides application
specific runtime services, CaaS is the missing layer that

1Google CaaS: https://cloud.google.com/container-engine/
2Docker: https://www.docker.com/
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Fig. 1: Container as a Service (CaaS) model.

glues these two layers together. As illustrated in Figure 1,
CaaS services are usually provided on top of IaaS’ virtual
machines (VMs). A recent study [2] show that VM-Container
configurations obtain close to, or even better performance, than
native Docker (container) deployments.

Although CaaS is increasingly gaining popularity and go-
ing to be one of the major cloud service models, improving
energy efficiency in CaaS data centers has not yet been inves-
tigated deeply. Therefore, in this paper, we model the CaaS
environment and the associated power optimization problem.
Servers, cooling systems, and network elements are the three
main power consumers in a data center, among which servers
with 40-50% energy consumption has the biggest share [1].
Therefore, in this paper we propose a framework in CaaS
context that decreases the number of running servers through
container migration algorithms.

Like any consolidation solution, our framework should be
able to tackle the consolidation problem in three stages. Firstly,
it should identify the situations in which container migration
should be triggered. Secondly, it should select a number of
containers to migrate in order to resolve the situation. Finally,
it should find migration destinations (host/VM) for the selected
containers. In the first stage of this framework, container
migration is initiated if a host is identified as over-loaded or
under-loaded considering a specific criteria. Two algorithms
with static under-load (UL) and over-load (OL) thresholds are
utilized for initiating the migrations. For the second stage,
“MCor” and “MU” algorithms are considered. “MCor” selects
the containers having the most correlated workloads with the



server’s hosting the containers while “MU” selects the ones
with the most CPU utilization. Finally for the third stage,
three bin packing host selection algorithms, including First-Fit
(FFHS), Random (RHS), and Least Full (LFHS), are applied.
Additionally, a threshold-base correlation aware host selection
algorithm named “CorHS” is also introduced. Later, the First-
Fit algorithm is applied to select the destination VM that its
capacity matches a predefined percentile of CPU workload of
the container.

The framework and its algorithms are further evaluated
through simulation. The widely used cloud simulation toolkit
CloudSim [3] is extended to model a CaaS provider and
implement the proposed framework. Real world workload
traces from PlanetLab [4] is used as the containers’ CPU
workload. The experimental result shows that the “CorHS”
policy that uses workload correlation analysis for destination
host selection reduces the energy consumption in most of the
scenarios.

The rest of the paper is organized as follows. Section II
presents system objective and problem formulation . In Sec-
tion III, the system architecture and its components are briefly
discussed. Later in Section IV, the algorithms are presented.
Section V discusses the testbed and the experiment results,
while Section VI presents the related work. Finally Section VII
discusses the conclusion of the work and possible future
directions.

II. SYSTEM OBJECTIVE AND PROBLEM FORMULATION

In this section, we briefly discuss the objective of our
proposed system, which is minimizing the data center overall
energy consumption while meeting the Service Level Agree-
ment (SLA). Firstly, we discuss the power model utilized for
estimation of the data center energy consumption and the
SLA metric used for comparison of consolidation algorithms.
Symbols used in this section are defined in Table I.

A. Data Center Power Model

The power consumption of the data center at time t is
calculated as follows:

Pdc(t) =

NS∑
i=1

Pi(t) (1)

For estimation of power consumption of servers, we consider
the power utilization of the CPU because this is the component
that presents the largest variance in power consumption in
regards to its utilization rate [5]. Therefore, for each server

i, CPU utilization (Ui,t) is equal to
∑Nvm

j=1

∑Nc

k=1 Uc(k,j,i)
(t)

and the power consumption of the server is estimated through
Equation 2.

Pi(t) =

{
P idle
i + (Pmax

i − P idle
i ) ∗ Ui,t Nvm > 0(2)

0 Nvm = 0(3)

The energy efficiency of the consolidation algorithms is eval-
uated based on the data center energy consumption obtained
from Equation 1.

TABLE I: Description of symbols used in Section II.

Symbol Description

Pdc(t) Power Consumption of the data center at time t
Pi(t) Power Consumption of Server i at time t
Ns Number of servers

P idle
i Idle power Consumption of Server i

Pmax
i Maximum power Consumption of Server i

Ui,t CPU Utilization percentage of Server i at time t
Nvm Number of vms

Nc Number of containers

Uc(k,j,i)
(t) CPU utilization of container k on (VM j, Server i) at time t

Nv Number of SLA Violations

tp The time t at which the violation p happened

vmji VM j on server i
CPUr(vmji, tp) CPU amount requested by VM j on server i at time tp
CPUa(vmji, tp) CPU amount allocated to VM j at time tp
S(i,r) Server i Capacity for resource r
Uvmj,i(t) CPU Utilization of VM j on Server i at time t

vm(j,i,r) The capacity of resource r of VM j on server i
c(k,j,i,r) The resource r capacity of container k on (VM j, server i)

B. SLA Metric

Since in our targeted system we do not have any knowledge
of the applications running inside the containers, definition of
the SLA metric is not straightforward. In order to simplify
the definition of the SLA metric, we defined an overbooking
factor for provisioning containers on virtual machines which
is defined by the costumer based on the percentile of the
application workload at the time of the container request
submission. Hence, SLA is violated only if the virtual machine
on which the container is hosted on do not get the required
amount of CPU that it requested. In this respect, the SLA
metric is defined as the fraction of the difference between
the requested and the allocated amount of CPU for each VM
(Equation 4 [6]).

SLA =

Ns∑
i=1

Nvm∑
j=1

Nv∑
p=1

CPUr(vmj,i, tp)− CPUa(vmj,i, tp)

CPUr(vmj,i, tp)

(4)

C. Problem Formulation

In order to minimize the power consumption of a data cen-
ter with M containers, N VMs and K servers, we formulate
the problem as follows:

min(Pdc(t) =

NS∑
i=1

Pi(t)) (5)

Considering the following constraints:

Nvm∑
j=1

Uvmj,i(t) < S(i,r), ∀i ∈ [1, Ns], ∀r ∈ {CPU} (6)

Nvm∑
j=1

vm(j,i,r) < S(i,r), ∀i ∈ [1, Ns]

, ∀r ∈ {BW,Memory,Disk}
(7)

Nc∑
k=1

Uc(k,j,i)
(t) < vm(j,i,r), ∀j ∈ [1, Nvm]

, ∀i ∈ [1, Ns], ∀r ∈ {CPU}
(8)



Nc∑
k=1

c(k,j,i,r) < vm(j,i,r), ∀j ∈ [1, Nvm], ∀i ∈ [1, Ns]

, ∀r ∈ {BW,Memory,Disk}
(9)

Although optimization toolkits can be employed to find a
near-optimal solution for the above-mentioned problem, the
computation time and complexity increases exponentially with
the number of containers. Therefore, in section IV we evaluate
set of heuristic algorithms that can obtain near-optimal solution
with less computational overhead.

III. SYSTEM MODEL

The proposed model targets a CaaS environment where
applications are executed on containers. Users of this service
submit requests for provisioning of containers. Containers run
inside the virtual machines that are hosted on physical servers.
Both physical servers and VMs are characterized by their
CPU performance, memory, disk, and network bandwidth.
Likewise, containers are characterized by the demand of the
aforementioned resources. The objective of the system is to
consolidate containers on the smallest number of VMs and
consequently the smallest number of physical servers. The
framework consists of ’Host Status‘ and ‘Consolidation’ mod-
ules which are shown in Figure 2 along with their components.

A. Host Status Module

The host status module which executes on each active
hosts in the data center, consists of three main components
as follows.

1) Host Over-load/ Under-Load Detector: The host over-
load/under-load detection algorithms which will be discussed
in Section IV are both implemented in this component. The

Fig. 2: System Architecture and Processes.

Algorithm 1: Overview of the Container Selector pro-
cess.

Input: serverContainerList(SCL)
Output: SelectedContainersList

1 while host status is Overloaded do
2 container ←
3 ContainerSelectionAlgorithm.getContainer(SCL)

SelectedContainersList.add(container)
SCL.remove(Container)

component checks the resource utilization of the host every five
minutes. If the host is identified as under-loaded, the detector
sends the host ID and the IDs of all the containers running on
the host to the consolidation module. This is done in an attempt
to shut down the under-loaded host if the consolidation module
can find new destinations for all the containers. However, if
the host status is identified as over-loaded the detector sends
a request to activate the Container Selector component.

2) Container Selector: The container selection algorithm
which will be discussed in Section IV is implemented in
this component. The component is activated whenever the
host is identified as overloaded and the container selection
process continues until the host status is no longer over-loaded
(Algorithm 1).

3) Container Migration List (CML): The information about
containers selected by the Container Selector are saved in this
component and are submitted to the consolidation module.

B. Consolidation Module

The consolidation module is installed on a separate node
and can be replicated to avoid single point of failure. This
module identifies an appropriate destination for the selected
containers to be migrated.

1) Over-loaded Host List: This component stores hosts that
are identified as over-loaded by their status.

2) Over-loaded Destination Selector: This component
finds the appropriate destination for the containers in the
received CMLs utilizing the host selection algorithm which
will be discussed in Section IV. The process of this component
is shown in Algorithm 2.

3) Destination List: Data received from the Overloaded
Destination Selector component, which contains the container
ID along with the host and the VM ID of the migration
destination, are stored by this component.

4) VM Creator: This component is responsible for esti-
mating the number of required VMs to be instantiated in the
next processing window. The estimation is done based on
the number of containers for which the over-load destination
selector was unable to assign an appropriate host or VM as
the destination. The priority of this component is creating the
largest VM possible on under-loaded hosts and assigning the
containers to these new VMs. If any container is left, it then
chooses a random host from the inactive hosts and creates VMs
on this host as long as there are no containers left without any
migration destination.



Algorithm 2: Over-loaded Destination Selection process.

Input: overLoadedHostList(SCL),
CMLs,activeHosts

Output: Destination(hostId, V mId)
1 containerList.addAll(CMLs)
2 availableHostList(AHL)←
activeHosts.removeAll(SCL)

3 containerList.sortByCPUUtilization()
4 foreach container in containerList do
5 destination←

HostSelectionAlgorithm.getplacement(AHL,container)
if destination �= null then

6 containerList.remove(container)
7 Send destination and container.getId() to

Destination List Component

8 else
9 Send container to VM Creator component

10 Activate the VM Creator component.

5) Under-loaded Host List: Hosts that are found to be
under-loaded by their status module are stored on this list.

6) Under-loaded Destination Selector: Considering the
under-loaded host list and the destinations decided by the over-
load destination selector, this component finds the best destina-
tion for containers from the under loaded hosts (Algorithm 3)
using host selection algorithm which will be discussed in the
next section. If this component finds an appropriate destination
for all the containers of an under-loaded host, it then sends
the destination of the containers together with the destinations
decided by the over-loaded destination selector to the VM-
Host Migration Manager component. It also sends the host ID
to the Under-loaded host deactivator component.

7) VM-Host Migration Manager: The containers ID to-
gether with the selected destinations are all saved in this
component, and are used for triggering the migration.

8) Under-loaded Host Deactivator: It switches off under-
loaded hosts that had all their containers migrated.

IV. ALGORITHMS

In this section, we briefly discuss the algorithms imple-
mented in the components of the ‘Host Status’ and ‘Con-
solidation’ modules of the proposed framework. As we use
correlation analysis in the algorithms, we start with briefly
describing the Pearson’s correlation analysis.

A. Correlation Analysis

The Pearson’s correlation analysis of the container load X
and host workload Y performed by the selection algorithms
are discussed here. This analysis results in an estimate named
“Pearson’s correlation coefficient” that quantifies the degree of
dependency between two quantities. According to Pearson’s
analysis, if there are two random variables X and Y with
n samples denoted by xi and yi the correlation coefficient is
calculated using Equation 10 where x̄ and ȳ denote the sample
means of X and Y respectively and rxy varies in the range
[−1,+1].

Algorithm 3: Under-loaded Destination Selector process.

Input: destinationList(DL),
underloadedHostList(UHL),activeHosts

Output: ContainersToMigrateList
1 availableHostList(AHL)←
activeHosts.removeAll(hosts in DL)

2 ContainersToMigrateList.addAll(DL)
3 UHL.sortByCpuUtilizationInDescendingOrder()
4 foreach host in UHL do
5 if host.getId() is in DL then
6 continue

7 else
8 AHL.remove(host)
9 containerList← host.getContainerList()

foreach container in containerList do
10 destination← HostSelectionAlgorithm.
11 getplacement(AHL,container)
12 if destination �= null then
13 containerList.remove(container)
14 tempDestList.add(destination)

15 if containerList.size() is equal to 0 then
16 ContainersToMigrateList.addAll(tempDestList)
17 Send the host.getID() to the Under-loaded

host deactivator component.

18 else
19 AHL.add(host)

20 Send ContainersToMigrateList to the Migrate to
VM-Host Migration Manager component.

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

(10)

The more positive and closer the correlation coefficient of
X and Y gets to +1, the variables are more likely to have their
peak/valley together. In other words, if the container workload
is not correlated with the host load, there is less probability of
that container causing the host to become over-loaded.

B. Host Status Monitor Module

1) Overload and Under-load Detection Algorithms: These
algorithms are implemented in the Host Over-load/Under-load
Detector component and are responsible for identifying host
status. We consider static thresholds Tol and Tul as the criteria
for a host to be over-loaded (Equation 11) or under-loaded
(Equation 12) respectively .

Host Status =

{
Overloaded if U(i,t) > Tol (11)

Under-loaded if U(i,t) < Tul (12)

2) Container Selection Algorithms: This algorithm is im-
plemented in the Container Selector component and is respon-
sible for selecting a number of containers to migrate from the



over-loaded hosts so that the host is no longer over-loaded. The
selected container list is saved in the Container Migration List
and passed to the consolidation module to find a new VM for
the containers. Here, we consider two algorithms as bellows:

• Maximum Usage (MU) Container Selection Algo-
rithm: Here, the container that has the maximum CPU
usage is selected and added to the migration list.

• Most Correlated (MCor) Container Selection Algo-
rithm: Here, the container that is the most correlated
one with the host load is chosen and added to the
migration list.

C. Consolidation Module

The algorithms in this section are implemented in the
consolidation module where the new destination is assigned
for the CMLs received from the over-loaded hosts and the
containers of the under-loaded hosts. The new destination
contains the new host ID and the VM ID that the container
should be migrated to.

1) Host Selection Algorithms: The host selection algorithm
is implemented in the Overload and Under-load destination
Selector components. The output of the algorithm contains the
host and VM ID of the migration destination. The following
host selection algorithms are studied in this paper. In all the
following selection methods, the virtual machine is chosen
using the First-Fit algorithm based on a given percentile of
the container’s CPU workload.

• Random Host Selection Algorithm (RHS): It selects
a random host from the available host list AHL that
can host the container on at least on one of its VMs.

• First Fit Host Selection Algorithm (FFHS): Chooses
the first host of the available host list (AHL) that
meets the container’s resource requirements.

• Least Full Host Selection Algorithm (LFHS): The
AHL list is sorted according to its CPU utilization in
descending order. Then, the first host in the sorted
AHL that meets the resource requirements of the
container is selected as the migration destination.

• Correlation Threshold Host Selection Algorithm
(CorHS): The algorithm first checks if the CPU work-
load history of containers and hosts are adequate for
correlation analysis. In a case that the workload history
is not available, it simply uses LFHS. If the workload
history is available, the first host that meets the initial
correlation threshold constraint and can accommodate
the container on one of its VMs is chosen. If no hosts
are found, the threshold is relaxed by 0.1 until a host
is found (Algorithm 4).

V. PERFORMANCE EVALUATION

A. Simulation Setup

We extended the widely used cloud simulation toolkit
CloudSim [3] to model a CaaS provider. The extended package
adds the support for modeling containers and their migration
in a cloud data center. In our model, we consider 0.4 seconds

Algorithm 4: Correlation Threshold Host Selection Al-
gorithm.

Input: availableHostList(AHL), container, correlation
Threshold (0 < thr < 1)

Output: destination
1 find← false
2 containerloadHistory ←
container.getLoadHistory()

3 if containerloadHistory.size() is less than 5 then
/* Find a host utilizing a

substitute policy. */
4 destination←

LeastFullHostSelectionAlgorithm.getHost(container,
AHL)

5 find← true

6 while !find do
7 foreach host in AHL do
8 hostloadHistory ← host.getLoadHistory()
9 cor ←Compute the correlation between

hostloadHistory and containerLoadHistory
10 if cor < thr then
11 if host.allocate(container) then
12 destination←host.getId(),

host.getVmId(container)
13 find← true
14 break

/* If no hosts are found then relax
the threshold by 0.1 */

15 cor ← cor + 0.1
16 if cor > 1 then

/* Stop the search, cor can not
be bigger than 1. */

17 destination← null
18 break

startup delay for each container3 and 100 seconds startup delay
for VM creation [7]. These startup times are important as they
directly affect the SLA metric.

A data center with 700 heterogeneous servers of three
different types is simulated. Characteristics of each server
together with VM and container configurations is shown in
Table II. Network bandwidth is 1 GB/s, 10 MB/s, and 250
KB/s for servers, VMs, and containers, respectively. The same
assumption is made for disk bandwidth and it is 1 TB, 2.5 GB,
and 0.1 GB for servers, VMs, and containers, respectively.

In order to evaluate the algorithms considering the afore-
mentioned simulation set up and configurations, we applied the
workload traces from PlanetLab [4]. These traces contain 10
days of the workload of randomly selected sources from the
testbed that were collected between March and April 2011 [6].

Each container is assigned to one of the workloads con-
taining one day of CPU utilization data which is reported
every 5 minutes. In order to consolidate more containers on

3Docker Performance Tests: http://sickbits.net/some-docker-performance-
tests/



each virtual machine, a predefined (e.g 80th) percentile of the
workload is considered while packing the containers on the
VMs using the First Fit algorithm.

B. Experiment Results

In this section, we investigate the impact of the algorithms
presented in Section IV and its tuning parameters on the system
performance and data center energy consumption. Four sets of
experiments were conducted with different objectives. Each
experiment on each set is repeated 30 times and results are
compared considering four metrics, namely SLA violations
(as discussed in Section II), energy consumption, container
migrations rate (number of containers migrated in each 5
minutes time slot), and average number of VMs created during
the 24 hours simulation period.

Impact of the Over-load (OL) Threshold: We inves-
tigated the effect of the ‘OL threshold’ in the Host Over-
load/Under-load Detector component that identifies the host
status. Figure 3 shows that, for all the algorithms, increasing
“OL” decreases the container migration rate since less hosts
would be identified as over-loaded and less number of contain-
ers would be chosen to migrate. This decrease in the container
migration rate results in less number of VM creations. On the
other hand, higher ‘OL threshold’ increases the probability that
the VMs could not get the required resources for the containers
to run and this would increase the SLA violations. For “CorHs”
and “FFHS,” 80% is the most efficient threshold in terms of
the energy consumption. For “LFHS” and “RFHS” 100% is
the best option in terms of the energy efficiency, however as
Figure 3 depicts average SLA violation considerably raises
when compared to 80% and 90% thresholds. “CorHs” with
80% over-load threshold consumes 7.41% less energy on
average when compared to other experiments with a reasonable
average SLA violations (less than 5%).

Impact of the Under-load (UL) Threshold: In this set
of experiments we vary the “UL” threshold while keeping the
other parameters fixed, as shown in Table III. As shown in
Figure 4 ,decreasing the under-load threshold increases the
number of container migrations since more hosts would be
identified as under-loaded as the threshold increases. Higher
container migration rate results in more VMs to be created to
host the migrating containers. This means more SLA violations
since the container needs to wait for the VM to start-up. 70%
is the most energy efficient threshold for all the algorithms
except for “LFHS” because of the bigger gap between the
number of the VMs created in 70% under-load threshold and
the other two thresholds (Figure 4c). “CorHS” with 70% under-
loaded threshold outperforms the other algorithms by 7.46%
on average considering energy consumption with less than 5%
SLA violations (Figure 4).

Impact of Container Selection Policies: As Figure 5
shows, since “MU” chooses the container with the biggest
utilization, it requires fewer containers to migrate when the
host is over-loaded and consequently results in smaller number
of migrations. However, this selection increases the number of
VMs required as the migration destination since most of the
large containers are selected. Although the delay for starting
containers is smaller than starting VMs, the higher container
migration rate in “MCor” results in more SLA violations

than “MU”. Considering all experiments, “CorHS” is the
most energy efficient host selection algorithm with 7.45% less
consumption and less than 5% SLA violation.

Impact of container overbooking: Overbooking is an
important factor that affects the efficiency of consolidation al-
gorithms in terms of energy utilization and the SLA violations.
Here, containers are allocated to VMs based on the prede-
fined percentile of the application workload running on each
container (Table III). The higher percentile results in smaller
number of containers accommodated on each VM. Therefore,
as Figure 6 illustrates 20th percentile results in fewer VMs
being created and consequently less energy consumption and
more SLA violations.

The number of container migrations is the same for most
of the algorithms since the variance of the workload is low
and migration decisions are based on the host load rather than
VM load.

VI. RELATED WORK

Unlike the extensive research on energy efficiency of
computing [8], [9] and network resources [1], [10]–[12] for
virtualized cloud data centers, only few works investigated the
problem of energy efficient container management. Ghribi [13]
discussed energy-efficient management of containers in data
centers, however the effectiveness of the proposed algorithms
has not been evaluated. Spicuglia et al. [?] proposed OptiCA,
which simplifies the deployment of big data applications in
CaaS. The aim of the proposed approach is to achieve the
desired performance for any given power and core capacities
constraints. OptiCA focuses on effective resource sharing
across containers under resource constraints, while we focus
on container consolidation to reduce energy consumption.

Dong et al. [14] proposed a greedy container placement
scheme, the most efficient server first or MESF, that allo-
cates containers to the most energy efficient machines first.
Simulation results using an actual set of Google cluster data
as task input and machine set show that the proposed MESF
scheme can significantly improve the energy consumption as
compared to the Least Allocated Server First (LASF) and
random scheduling schemes.

Yaqub et al. [15] highlighted the differences between
deployment models of IaaS and PaaS. They noted that the
deployment model in PaaS is based on OS-level containers that
host a variety of software services. In addition, they mentioned
that, because of unpredictable workloads of software services
and the variable number of containers that are provisioned and
de-provisioned, PaaS data centers usually experience under-
utilization of the underlying infrastructure. Therefore, the
main contribution of their research is modeling the service
consolidation problem as a multi-dimensional bin-packing
and applying metaheuristics including Tabu Search, Simulated
Annealing, Late Acceptance, and Late Simulated Annealing to
solve the problem. We also modeled the container allocation
problem; however, our solution focuses on application of
correlation analysis and light-weight heuristics rather than on
metaheuristics.

In our previous research [16], we considered CaaS cloud
service model and presented a technique for finding efficient



TABLE II: Configuration of servers, VMs, and containers.

Server Configurations and power models (700 Servers)

Server type # CPU [3GHz] (mapped on 37274 MIPS Per core) Memory (GB) P idle(Watt) Pmax (Watt) Population

# 1 4 cores 64 86 117 234

# 2 8 cores 128 93 135 233

# 3 16 cores 256 66 247 233

Container and VM Types (5000 Containers and 1000 VMs in total)

Container Type # CPU MIPS (1 core) Memory (GB) Population VM Type # CPU [1.5GHz] (mapped on 18636 MIPS
Per core)

Memory(GB) Population

# 1 4658 128 1666 # 1 2 cores 1 256

# 2 9320 256 1667 # 2 4 cores 2 256

# 3 18636 512 1667
# 3 1 core 4 256
# 4 8 cores 8 256

TABLE III: Experiment sets, objectives, and parameters.

Set# Objective Container Selection UL OL Percentile Correlation
Threshold

#1 Investigate the impact of “OL” Threshold MU 70% [80%, 90%, 100%] 80 0.5

#2 Investigate the impact of “UL” Threshold MU [50%, 60%, 70%] 80% 80 0.5

#3 Investigate the impact of container selection policies [MU, MCor] 70% 80% 80 0.5

#4 Investigate the impact of overbooking of containers MU 70% 80% [20%, 40%, 80%] 0.5
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Fig. 3: Impact of over-load detection threshold “OL” on container migration rate, created VMs, data center energy consumption,
and SLA violations.
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Fig. 4: Impact of under-load detection threshold “UL” on container migration rate, created VMs, data center energy consumption,
and SLA violations.
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Fig. 5: Impact of container selection algorithm on container migration rate, created VMs, data center energy consumption, and
SLA violations.
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Fig. 6: Impact of overbooking of containers on migration rate, created VMs, data center energy consumption and SLA violations.

virtual machine sizes for hosting containers. To investigate the
energy efficiency of our VM sizing technique, we considered
baseline scenarios in which virtual machine sizes are fixed. Our
approach outperforms the baseline scenarios by almost 7.55%
in terms of the data center energy consumption. Apart from
the energy perspective, our approach results in less number of
VM instantiations.

VII. CONCLUSIONS AND FUTURE WORK

Improving the energy efficiency of cloud data centers is an
ongoing challenge that can increase the cloud providers return
of investment (ROI) and also decreases the CO2 emissions
which is accelerating the global warming phenomenon. Despite
the increasing popularity of Container as a Service (CaaS),
energy efficiency of resource management algorithms in this
service model has not been deeply investigated.

In this paper, we modeled the CaaS environment and the
associated power optimization problem. We proposed a frame-
work to tackle the issue of energy efficiency in the context
of CaaS through container consolidation and reduction in the
number of active servers. Four sets of simulation experiments
were carried out to evaluate the impact on system performance
and data center energy consumption of our algorithms for
triggering migrations, selecting containers for migration, and
selecting destinations. Results show that the correlation-aware
placement algorithm (MCore) with 70% and 80% as under-
load and over-load thresholds outperforms other placement
algorithms when the biggest container is selected to migrate
(MU).

As future work, we will improve the placement algorithms
to make them aware of VMs startup delays and migration
overhead in order to decrease SLA violations.
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