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Abstract—Energy efficiency is one of the main challenges
that datacenters are facing nowadays. A considerable portion of
the consumed energy in these environments is wasted because
of idling resources. To avoid wastage, offering services with
variety of SLAs (with different prices and priorities) is a
common practice. The question we investigate in this research is
how the energy consumption of a datacenter that offers various
SLAs can be reduced. To answer this question we propose an
adaptive energy management policy that employs virtual ma-
chine (VM) preemption to adjust the energy consumption based
on user performance requirements. We have implemented
our proposed energy management policy in Haizea as a real
scheduling platform for virtualized datacenters. Experimental
results reveal 18% energy conservation (up to 4000 kWh in
30 days) comparing with other baseline policies without any
major increase in SLA violation.

Keywords-Energy efficiency; Virtual Machine (VM); data-
center; preemption; SLA;

I. INTRODUCTION

Datacenters normally encounter different usage scenarios
from users. For instance, running a scientific simulation,
which is in the form of a batch job without a specific
deadline; or hosting a corporate web site for a long period
of time, which requires a guaranteed availability and low
latency. In response to such diverse demands, many of the
current datacenters provide services with different Service
Level Agreements (SLA) that imply different priorities.

For example, Amazon EC21 supports reserved (availabil-
ity guaranteed) and spot (best-effort) virtual machine (VM)
instances. Offering a combination of advance-reservation
(AR) and best-effort (BE) schemes [1], interactive and
batch [2] jobs, tight-deadline and loose-deadline jobs [3] are
also common practices in datacenters. In these environments,
when there is a shortage of resources, commonly, lower
priority requests are preempted in favour of a higher priority
one [4], [5], [6], [1], [2].

Haizea [7] is a scheduler for virtualized datacenters that
supports combination of advance-reservation (also termed
AR) and best-effort (also termed BE) requests. In the former,
the resource must be available at the requested time; whereas
in the latter, requests are served as soon as possible and they

1http://aws.amazon.com/ec2

are placed in a queue if necessary. In Haizea, BE requests are
preempted when there is insufficient resources for a newly
arriving AR request. However, preemption can potentially
lead to starvation of BE requests [8]. To prevent starvation,
Haizea scheduler considers a limited and predictable waiting
time for BE requests (the low priority requests).

Another trend that is prominent for datacenters is the
growing awareness about energy consumption within the
datacenters. Thus, people from industry as well as academia
are seeking for energy efficient solutions within the datacen-
ters that are also aware of user required performance and
SLA.

Efficient resource management policies, in particular, can
significantly reduce the energy consumption of datacen-
ters [9]. In many of the current datacenters Virtual Machine
(VM) technology is being used by the resource manage-
ment system as a unit of resource provisioning [10]. VMs
offer flexibilities, such as preemption (suspend and resume),
migration, and consolidation, to the resource management
systems in order to implement energy efficient policies.

Taking into account the importance of supporting different
SLA levels and energy efficiency in datacenters, in this
research, we investigate how the energy consumption within
such a datacenter can be reduced. We consider circumstances
that the datacenter provides AR and BE schemes where
the BE requests should not suffer from starvation. More
specifically, the research question that we address is: How
the energy consumption of a datacenter that supports AR
and BE requests can be reduced while the BE requests do
not suffer from starvation?

We answer this question by considering preemption of
the lower priority (e.g. BE) requests as an approach for
saving energy. In fact, we propose an energy management
policy that determines whether a new arriving high priority
(e.g. AR) request should be served via preempting other
requests, or through reactivating switched off resources.
Additionally, the policy applies VM consolidation to save
energy in circumstances that do not lead to starvation for BE
requests. The proposed energy management policy employs
fuzzy logic in order to derive the appropriate decision.

We implement our policy in the context of Haizea [1]. For
that purpose, we first add the power-awareness capability



to the Haizea; then, we incorporate our proposed energy
management policy into that.

In summary, contributions of this research are threefold:
• Proposing an adaptive energy management policy

within a datacenter via preemption-awareness.
• Extending the Haizea scheduler with energy-awareness

capabilities.
• Incorporating and evaluating the proposed energy man-

agement policy in the extended Haizea.
Extensive experiments under realistic conditions indicate
that the proposed policy significantly saves energy without
any major starvation for lower priority requests.

The rest of this paper is organized as follows: In Section II
related research work is introduced. In Section III, three
contributions of this research are explained. Performance
evaluation of the proposed policy is reported in Section IV.
Finally, conclusion and future works are provided in Sec-
tion V.

II. RELATED WORK

Over the last few years, energy efficient resource man-
agement has extensively been studied. Many of these stud-
ies have employed VM consolidation for energy conser-
vation. Another well studied approach is using dynamic
voltage/frequency scaling (DVFS). In this section, we review
related research works in these areas and position our work
in comparison with them.

Berral et al. [11] investigated a supervised machine
learning approach for workload consolidation without SLA
violation within a datacenter. They applied machine learning
to predict the energy efficiency as well as performance of
a job on a set of resources. By contrast, we investigate
situation with multiple SLA levels where one level has
preemptive priority over the other.

In another work based on VM consolidation [12], the au-
thors applied limited lookahead control in order to maximize
the datacenter profit via energy consumption minimization
and SLA violations. The controller decides the number of
physical and virtual machines to be allocated for each VM.
Although we aim at the same objective in this research,
we consider how preemption can affect energy consumption
where requests have preemptive priority.

Petrucci et al. [13] presented an adaptive energy man-
agement policy based on DVFS that considers both user’s
required performance and energy consumption within a
platform with multiple application services. On the contrary,
we consider decisions such as switching on/off resources and
preemption to save energy.

pMapper [14], provides an energy-aware application
placement platform in heterogeneous datacenters that min-
imizes energy and migration costs while meeting perfor-
mance guarantees. Our work differs from pMapper in the
sense that we focus on the impact of suspend and resuming

(preempting) VMs as the energy conservation tool, whereas
pMapper considers the impact of live migration of VMs.

Kephart et al. [15] proposed an agent-like approach for
controlling both response time and power consumption
within a cluster. They apply a coordinator between two
independent modules, one for optimizing response time and
the other for energy consumption. The coordinator uses rein-
forcement learning to learn models of dependency between
power consumption and response time. By contrast, we focus
on the circumstances that requests are in different levels
of SLA. Additionally, we consider VM-based provisioning
whereas Kephart et al. [15] consider web-based requests.

III. ENERGY MANAGEMENT SCHEME

In this section, we describe the proposed energy manage-
ment policy in addition to the modifications in Haizea to
make it energy-aware. We also describe how the proposed
policy was implemented in Haizea.

A. Preemption-aware Energy Management Policy (PEMP)

The overall objective of the energy management policy
is reducing energy consumption, while satisfying the users’
performance demand within a datacenter.

As mentioned earlier, requests in the system are of two
distinct levels of priority, namely, advance-reservation (AR)
and best-effort (BE). In the former, which has the preemptive
priority, the request has to be served within the requested
time. In the latter, however, requests should not suffer from
starvation. Nonetheless, preempting BE requests in favour of
AR requests and scheduling them in a later time slot leads
to increase in waiting time and can potentially end up with
indefinite waiting time for BE requests (i.e. starvation) [5].

Therefore, to avoid starvation, we consider a situation
where BE requests also have a predictable waiting time. For
that purpose, the system administrator defines a maximum
average waiting time (termed MAWT) for BE requests.
Here, we assume MAWT to be α (also called waiting factor)
times longer than the average duration of BE requests (i.e.
MAWT = α· |duration|). For example, the administrator
can choose the MAWT to be 5 times of the average duration
of BE requests.

In this situation, resource acquisition for an arriving AR
request should be performed in a way that the average
waiting time of BE requests remain smaller than the MAWT
and also minimum possible energy would be consumed.
Resource acquisition can be carried out either via preemption
of resources that run BE requests, or switching on more
resources. Additionally, the policy can decide to perform
VM consolidation to save energy.

Preemption is applied when the risk of violating MAWT
for BE requests is low. By contrast, when the violation risk
is high, the policy should switch on resources and offload
requests to them. Finally, when energy consumption is high



and the average waiting time of BE requests is low, the
policy should apply VM consolidation to save energy.

In fact, the risk of violating MAWT and energy consump-
tion are decisive variables. These variables can be expressed
using linguistic variables such as low, medium, and high.
Considering the fuzzy logic power in modelling linguistic
variables in a system [16], we employ that to model the
variables and infer the proper decision.

The proposed fuzzy engine inputs should describe the vio-
lation risk and energy consumption. The output of the fuzzy
engine is a value that drives the decision of how to allocate
resources for an arriving AR request. The output broadly
can be switching on resources, preemption, consolidation,
or a combination of these actions. We define violation risk
of MAWT as follows:

V =
τ

α·E
(1)

where α is the waiting factor, and E and τ are the average
duration and average waiting time of BE requests, respec-
tively. E is calculated based on Equation 2.

E =

N∑
i=1

ni· di

N∑
i=1

ni

(2)

where N is the number of BE requests waiting in the queue,
ni is the number of resources, and di is the duration required
by BE request i.

Also, τ in Equation 1 is defined based on Equation 3.

τ =

N∑
i=1

ni·wi

N∑
i=1

ni

(3)

where wi is the waiting time of BE request i. Values more
than one for violation risk (V > 1) shows that BE requests
are waiting for more than the MAWT.

The second input of the fuzzy engine helps in deciding
about preemption or switching on/off resources. Therefore,
we consider the utilization of the currently switched on
resources (C) as the second input. C is defined according
to the Equation 4:

C =
L

P ·T
(4)

where P is the number of switched on resources; T is the
latest completion time of the current requests, and L is the
total load which is calculated based on Equation 5.

L =

N∑
i=1

di·ni (5)

Values of C vary between [0, 1]. Lower values for C
shows that the switched on resources are under-utilized. By
contrast, values near to 1 indicate that high utilization of the
currently switched on resources.

Based on the description, the fuzzy reasoning engine can
be expressed as follows:

V × C → D

C = {V L,L,M,H, V H}
V = {V LR,LR,HR, V HR}
D = {NP,QP,HP, 3QP,AP,LC,MC,HC}

(6)

where V L,L,M,H, V H indicate very low, low, medium,
high, and very high fuzzy sets for C. V LR,LR,HR, V HR
stands for very low risk, low risk, high risk, and very
high risk, respectively, for V . D shows the output fuzzy
sets of the fuzzy reasoning engine which can range from
NP , which means no preemption and resources should be
switched on, QP , which means that quartile of requested
resources should be allocated through preemption and the
rest has to be allocated via switching on resources. Similarly,
HP and 3QP stand for half preemption and 3 quartile
preemption. AP indicates that all resources should be allo-
cated through preemption which implies that no additional
resources should get switched on. Finally, LC, MC, and
HC indicate low, medium, and high consolidation of VMs,
which help in determining the number of resources that can
get switched off.

Since there are 2 inputs with 4 and 5 fuzzy sets, the fuzzy
rule-base has 20 rules. For instance, one rule in the fuzzy
rule base is as follows:

if V isM and C is H then D is HP (7)

which means that if V is medium and C is high, then D
is HP . This means that half of the requested resources have
to be allocated via preemption and the other half through
switching on resources. The fuzzy rule-base is formed based
on our expectation from the system behaviour. Then, these
rules were fine-tuned through extensive experiments and
evaluating the outcomes in different conditions. The entire
rule-base is accessible in our web site2 for interested readers.

The functionality of the fuzzy engine can be expressed
via the relation in Equation 8:

f(x) =

R∑
r=1

ȳr·µr
C(x1)·µr

V (x2)

R∑
r=1

µr
C(x1)·µr

V (x2)

(8)

where r indicates a fuzzy rule and R is the total number of
rules in the rule base (i.e. R = 20); x1 and x2 are the current

2http://ww2.cs.mu.oz.au/∼mohsena



values of C and V respectively, that are input values for the
fuzzy engine. µr

C(x1) and µr
V (x2) show the membership

value of the x1 and x2 in the membership function of rth

rule. Finally, ȳr expresses the center of fuzzy membership
function fired by rth rule from the output fuzzy set. f(x)
covers values more than −1.

We used triangular membership function for all inputs and
output variables. Also, we implemented the fuzzy engine
using a singleton fuzzifier, product inference engine, and
center of gravity defuzzifier [16]. It is worth mentioning
that the proposed policy is not a scheduling policy. Indeed,
it is the “energy management” component of the resource
management system, which works closely with the scheduler
but it is not the scheduler. The proposed policy determines
how resources should be allocated for a new AR request.
Then, a scheduling policy, e.g. backfilling, handles the
scheduling of requests on the existing resources.

B. Energy-awareness in Haizea

Haizea [1] is an open source platform that can be used as
the scheduling backend of a virtual infrastructure manager,
such as OpenNebula [17], within a datacenter.

Haizea is a lease-base scheduler. A lease is an agreement
between resource provider and resource consumer whereby
the provider agrees to allocate resources to the consumer
according to the lease terms presented by the consumer [1].
In Haizea, the lease terms include the hardware, software,
and availability period for that hardware and software.
Haizea uses VMs to implement leases. Haizea supports AR
and BE leases where AR leases have preemptive priority
over the BE leases. Thus, in situation that there is not enough
resources available for AR leases, BE leases have to be
preempted in favour of AR leases. Haizea takes into account
all the overheads of suspending and resuming the VMs and
schedules them.

Haizea, by default, assumes that all resources are switched
on and are ready to be utilized. To add energy-awareness to
the Haizea, this assumption has to be relaxed. In fact, in the
energy-aware Haizea, the assumption is that resources are
switched off initially. Then, as the time passes and the de-
mand increases, the resources are switched on. Accordingly,
when there is not any scheduled request on a resource, the
resource is switched off. Adding these capabilities entails
significant modification in the architecture of Haizea.

As a result of these modification, Haizea lease scheduler
is equipped with new functionalities that allow:

• Switching on resources in an on-demand manner. Here,
on-demand refers to situation that the number of
switched on resources is not adequate to serve AR
requests. In our energy management policy on-demand
switching on can also be carried out when there is a
risk of starvation.

• Switching off the resources when they are not required.
This occurs when there is not any scheduled request on

a resource.
• VM consolidation which takes place when some re-

sources are under-utilized. In this circumstances, by
rescheduling and re-allocating VMs from some re-
sources, they become idle and, therefore, switched off.
In the implementation, we apply VM consolidation on
resources that have smallest number of leases scheduled
on them.

• The scheduler also modified in a way that just considers
switched on resources at each moment. In other words,
the scheduler enabled to dynamically add and remove
resources from the scheduling.

Apart from the mentioned modifications, there are plenty
of minor changes in the new structure. We uploaded the
energy-aware version of Haizea to our web site. Interested
readers should be able to understand the modifications
clearly by downloading and reviewing the code and doc-
umentations. We did the implementation in a pluggable way
that enables other researchers to develop their own energy
management policies.

C. Incorporating the Preemption-aware Energy Manage-
ment Policy into Haizea

After implementing the basic functionalities for energy-
awareness in Haizea, the policy proposed in subsection III-A
can be implemented and incorporated into the Haizea. The
pseudo code of the implemented policy is illustrated in
Algorithm 1.

The algorithm is run for each arriving AR request and
decides how the resources should be allocated to the re-
quest (i.e. through switching on resources, preemption, or
consolidation). Additionally, it is run periodically to avoid
resource starvation or resource wastage in the datacenter.
The algorithm takes the average waiting time (τ ), average
duration (E), and waiting factor (α) of BE leases, the request
to be scheduled (req) as inputs. The result of the algorithm
is the proper action that should be taken.

As we can see in the beginning of the algorithm, V and
C are calculated based on Equations 1 and 4 respectively. In
line 3, the fuzzy reasoning is invoked based on the values of
C and V . Then, from line 4 up to the end of the algorithm,
the appropriate action is performed based on the output of
the fuzzy engine (f , where f ≥ −1).

The way resources are allocated to an arriving AR request
is determined based on the value of f . 0 < f < 1 shows the
situation where resources should be provided via switching
on resources. As f approaches 1, fewer resources should
get switched on (line 8) and more resources should be
allocated via preemption. Specifically, f = 1 does not lead
to switching on any resource and all resources should be
allocated by preemption. In contrast, f > 1 shows the
situation that the violation risk is low in a way that VM
consolidation can be carried out.



Algorithm 1 Preemption-aware Energy Management Policy
(PEMP).
Require: α,τ ,P ,E,L,req

1. V ← τ/(α·E)
2. C ← L/(P ·T )
3. f ← FuzzyReasoning(V,C)
4. if f ≤ 1 then
5. if f < 0 then
6. Num← getNumNodes(req)
7. else if f > 0 and f < 1 then
8. Num← getNumNodes(req) ∗ (1− f)
9. end if

10. SwitchOnNodes(Num)
11. else
12. /*Consolidation*/
13. Num← getNumNodes(req) ∗ (f − 1)
14. minNode← Required(req.strtT ime)
15. if minNode ≤ (NumSwitchOn−Num) then
16. Consolidate(Num)
17. end if
18. end if

For consolidation (line 12 onwards), after deciding how
many of the resources can be consolidated (line 13), we must
know if switching off that many resources affect currently
scheduled AR leases or not. Therefore, we calculate the
minimum number of resources required at that time (line
14). If switching off resources do not affect AR leases (line
15), then the consolidation is carried out (line 16). For
consolidation, we use a greedy approach and consider the
resources that have minimum leases scheduled on them.

IV. PERFORMANCE EVALUATION

In this section, we discuss different performance metrics
considered, and then the scenario in which the experiments
were carried out. Finally, experimental results are discussed.

A. Experimental Setup

To have a realistic evaluation, the experiments are carried
out based on real traces from the Blue Horizon cluster [18]
in San-Diego Supercomputer Center (SDSC). Therefore, we
consider a datacenter with 512 single-CPU nodes, each
having 1GB of memory, 1Gbps bandwidth between them.
Aggressive backfilling [19] is used as the scheduling policy
in the datacenter. We also assume that each node can run one
VM. However, our proposed policy encompasses multi-core
systems where multiple VMs can exist in the same node.

1) Baseline Policies: We evaluate the proposed policy
against 2 other policies which are used as a benchmarks.
Details of these policies are described below:

• Greedy Energy Saver Policy (GESP): For the sake of
energy conservation, this policy switches on the min-
imum number of resources required for AR requests.

Then, BE requests can be scheduled in the remaining
available time slots (we call it scheduling fragments)
of AR leases.

• SLA-oriented Energy Saving Policy (SESP): This pol-
icy favours the BE requests by trying to ensure that
the MAWT is not violated. Therefore, whenever the
violation risk is high (V ≥ 1), the policy switches on
resources based on the number of resources required
by the request.

In the implementation of PEMP we have considered waiting
factor as 5 (α = 5).

2) Workload Model: To have a combination of AR and
BE requests, similar to Sotomayor et al. [7], [1], we extract
30 days of job submissions from the trace (5545 submis-
sions) and treat them as BE requests. Then, an additional
set of AR requests are interleaved into the trace. We keep
BE requests fixed and generate 72 different workloads by
varying AR request characteristics as follows:

• ρ, the aggregate duration of all AR requests within a
workload which is computed as a percentage of the
total CPU hours in the whole workload. We investigate
values of ρ = 5%, 10%, 15%, 20%, 25%, 30%. The rea-
son that we do not explore larger values for ρ is that, in
practice, the datacenters’ utilization is between 30% to
50% [14], [20]. Considering that the trace’s utilization
(BE requests) is 34.8%, the overall utilization (BE and
AR) is between 39.8% up to 64.8%.

• δ, the average duration of AR requests. In the exper-
iments we explore the values of δ = 1, 2, 3, 4 hours
which is similar to the trace’s duration. For generating
the duration of AR requests, we select the duration
randomly in the range of δ ± 30 minutes.

• θ, the number of nodes requested by each request. For
this parameter we use 3 distinct ranges, namely, small
(between 1 and 24). medium (between 25 and 48), and
large (between 49 and 72). We choose the number of
requested nodes for each request based on a uniform
distribution.

Based on the above parameters we can work out how
many AR requests are going to be generated. Using the
number of generated AR requests in 30 days, we can find
out the average arrival rate of AR requests in each day (λ).
Then, the individual interval between two AR requests is
randomly selected in the range of (λ − 1 hour and λ + 1
hour).

To investigate the impact of each parameter, in each
experiment, we modify one of the above parameters while
keeping the rest constant. When we modify ρ, we keep
δ = 3 hours and θ = medium. When δ is changed, we
keep ρ = 15% and θ = medium. Finally, when θ is
modified, the values of ρ = 15% and δ = 3 hours. It is
worth mentioning that changing δ and θ are performed in
a way that the aggregate duration of all AR requests (ρ)
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Figure 1. Power consumption of different policies. The experiment is performed by modifying: (a) the percentage of time taken by AR requests (ρ) where
δ = 3 hours and θ = medium (b) the average duration of AR requests (δ) changes (in hours) where ρ = 15% and θ = medium (c) the average size
of AR requests (θ) where ρ = 15% and δ = 3.

remains constant. This implies that increasing δ or θ lead to
fewer AR requests.

The results of the experiments are studied from the
practical and statistical perspectives. In statical analyses we
applied T-student tests and we ensured about the normality
of the underlying data.

Overheads involved in dealing with VMs such as sus-
pend/resume time, and boot up and shut down time are also
considered by Haizea and they are calculated according to
Sotomayor et al. [1]. To measure the energy consumption
of the cluster, we use the consumption information provided
by the results of SPECpower benchmark3. Based on these
information, the consumption of a resource with similar
configuration is on average 117 watts, when it is utilized.

B. Experimental Results

1) Energy Consumption: In this experiment we measure
the amount of energy consumed by each policy to run the
workload trace. To measure the energy consumption, we
calculate the overall time that the datacenter resources were
switched on and we report the results in kWh.

Figure 1, expresses the amount of energy consumed when
different policies are applied. In all subfigures of this figure
we notice that GESP leads to the lowest energy consumption
since it conservatively switches on resources (i.e., when they
are required by AR requests).

More specifically, Figure 1(a) illustrates that PEMP re-
markably consumes less energy than SESP (around 18% or
4000 kWh) when a considerable portion of requests are AR
(more than 25%). However, PEMP and SESP are performing
very similar when the proportion of AR requests are low
(less than 25%). In fact, when the proportion of AR requests
is low, preemption does not take place frequently, and,
therefore, BE requests have more opportunity for running.
Thus, policies that try to avoid violation do not come to
the picture and result into the similar amount of consumed
energy.

3http://www.spec.org/power-ssj2008/

In Figure 1(b) and 1(c), we observe a decrease in energy
consumption of GESP. The reason is that GESP switches
on resources when there is an AR request. However, when
the AR requests are long (Figure 1(b)) or their size are big
(Figure 1(c)), fewer AR requests are generated, as discussed
in Section IV-A2, to keep the proportion of AR requests
constant. Accordingly, fewer resources are switched on and
thus the energy consumption is reduced.

Additionally, in Figure 1(b) and 1(c), we observe that
PEMP considerably consumes less energy than SESP. Partic-
ularly, when AR requests become shorter (Figure 1(b)), the
difference becomes more significant. T-test analysis between
PEMP and SESP, in Figure 1(b), for durations less than 4
hours shows that 95% confidence interval of the average
difference is (193.5, 2830.1) kWh (P-value<0.001). Also,
95% confidence interval of the average difference between
PEMP and SESP, in Figure 1(c), is (360.8, 2030) kWh
(P-value=0.04). These values suggest that the difference
between PEMP and SESP is statistically and practically sig-
nificant. In fact, when AR requests are small or short, more
gaps remain for scheduling BE requests. Thus, violation risk
for BE requests is reduced which leads to more consolidation
opportunity and less energy consumption.

In Figure 1(b), we notice that the energy consumption
resulted from PEMP rises as the duration of AR requests
increases (specially, when the duration is 4 hours). The
reason is that when the AR requests are long (i.e. duration is
increased), BE leases are postponed in scheduling for a long
time. Therefore, the resources have to remain switched on
for longer time and this implies more energy consumption.

2) Maximum Average Waiting Time Violation Rate (vio-
lation rate): In this experiment, we measure the percentage
of violations from the MAWT that has taken place when
different policies are applied. For this purpose, we report
the percentage of BE requests that their waiting time was
beyond the MAWT.

Results of the experiment, in all subfigures of Figure 2, re-
veal that PEMP is performing very close to SESP. However,
the energy consumption resulted from these policies (see
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Figure 2. Percentage of maximum waiting time violation resulted from different policies. The experiment is performed by modifying: (a) the percentage
of time taken by AR requests (ρ) where δ = 3 hours and θ = medium (b) the average duration of AR requests (δ) changes (in hours) where ρ = 15%
and θ = medium (c) the average size of AR requests (θ) where ρ = 15% and δ = 3.

Figure 1) show that PEMP leads to less energy consumption
without increasing the violation rate. Additionally, in all
of the subfigures, as expected, GESP leads to very high
violation rates due to switching on few resources.

Subfigures of Figure 2, express that the violation rate of
SESP and PEMP are almost unchanged as ρ, δ, and θ vary.
This does not mean that the violation rate is not dependent
on these parameters. In fact, in these policies the number of
switched on resources are changed as ρ, δ, and θ are altered
(see Figure 1) and, therefore, the violation rate does not vary
significantly.

V. CONCLUSION

In this paper, we investigated the VM preemption as a
way to reduce energy consumption in datacenters, where
some requests have preemptive priority over the others.
Our proposed energy management policy (PEMP) applies
a fuzzy reasoning engine to determine if the resources for a
request have to be allocated through switching on resources,
preemption, consolidation, or a combination of these. We
implemented PEMP in Haizea, as a real scheduling platform
for datacenters, and evaluated under realistic conditions.
Experimental results reveal that PEMP reduces the energy
consumption by up to 18% (4000 kWh), over the course
of 30 days, and without significant starvation of lower
priority requests, compared to other baseline policies. In
future we plan to consider the impact of VM migration
as another possible action in preemption. Additionally, we
plan to investigate the effect of consolidation policies on the
proposed policy.
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configuration support for power-aware virtualized server clus-
ters,” WiP Session of the 21th Euromicro Conference on Real-
Time Systems. Dublin, Ireland, 2009.

[14] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and
migration cost aware application placement in virtualized
systems,” in Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware. Springer-Verlag New
York, Inc., 2008, pp. 243–264.

[15] J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Raw-
son, and C. Lefurgy, “Coordinating multiple autonomic man-
agers to achieve specified power-performance tradeoffs,” in
Proceedings of the Fourth International Conference on Auto-
nomic Computing. IEEE Computer Society, 2007, p. 24.

[16] L. Wang, “Adaptive fuzzy systems and control- design and
stability analysis(book),” Englewood Cliffs, NJ: PTR Prentice
Hall, 1994.

[17] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and
I. M. Llorente, “OpenNebula: The open source virtual ma-
chine manager for cluster computing,” in Open Source Grid
and Cluster Software Conference – Book of Abstracts, San
Francisco, USA, May 2008.

[18] “Parallel workloads archive.” http://www.cs.huji.ac.il/labs/
parallel/workload/.

[19] Q. Snell, M. J. Clement, and D. B. Jackson, “Preemption
based backfill,” in Job Scheduling Strategies for Parallel
Processing (JSSPP). Springer, 2002, pp. 24–37.

[20] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony, “The case for power man-
agement in web servers,” Power aware computing, vol. 78758,
2002.


