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Abstract—Cloud Storage Providers (CSPs) offer geographically data stores providing several storage classes with different prices. An

important problem facing by cloud users is how to exploit these storage classes to serve an application with a time-varying workload on

its objects at minimum cost. This cost consists of residential cost (i.e., storage, Put and Get costs) and potential migration cost (i.e.,

network cost). To address this problem, we first propose the optimal offline algorithm that leverages dynamic and linear programming

techniques with the assumption of available exact knowledge of workload on objects. Due to the high time complexity of this algorithm

and its requirement for a priori knowledge, we propose two online algorithms that make a trade-off between residential and migration

costs and dynamically select storage classes across CSPs. The first online algorithm is deterministic with no need of any knowledge of

workload and incurs no more than 2g � 1 times of the minimum cost obtained by the optimal offline algorithm, where g is the ratio of the

residential cost in the most expensive data store to the cheapest one in either network or storage cost. The second online algorithm is

randomized that leverages “Receding Horizon Control” (RHC) technique with the exploitation of available future workload information

for w time slots. This algorithm incurs at most 1þ g
w times the optimal cost. The effectiveness of the proposed algorithms is

demonstrated through simulations using a workload synthesized based on characteristics of the Facebook workload.

Index Terms—Cloud storage, dynamic replication and migration, read, write and storage costs, cost optimization, online algorithm
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1 INTRODUCTION

AMAZON S3, Google Cloud Storage (GCS)1 and Microsoft
Azure as leading CSPs offer different types of storage

(i.e., blob, block, file, etc.) with different prices for at least
two classes of storage services: Standard Storage (SS) and
Reduced Redundancy Storage (RRS).2 Each CSP also pro-
vides API commands to retrieve, store and delete data
through network services, which imposes in- and out-
network cost on an application. In leading CSPs, in-network
cost is free, while out-network cost (network cost for short)
is charged and may be different for providers. Moreover,
data transferring across DCs of a CSP (e.g., Amazon S3) in
different regions may be charged at lower rate (henceforth,
it is called reduced out-network cost). Table 1 summarizes
the prices for network and storage services of three popular
CSPs in the US west region, which shows significant price
differences among them. This diversification plays a central
role in the cost optimization of data storage management in
cloud environments. We aim at optimizing this cost that

consists of residential cost (i.e., storage, Put, and Get costs)
and potential migration cost (i.e., network cost).

The cost of data storage management is also affected by
the expected workload of an object. There is a strong correla-
tion between the object workload and the age of object, as
observed in online social networks (OSNs) [1] and delay-
sensitive multimedia content accessed via mobile devices
[2], [3]. The object might be a photo, a tweet, a small video, or
even an integration of these items that share similar read and
write access rate pattern. The object workload is determined
by how often it is read (i.e., Get access rate) and written (i.e.,
Put access rate). The Get access rate for the object uploaded
to OSNs is often very high in the early lifetime of the object
and such object is said to be read intensive and in hot-spot sta-
tus. In contrast, as time passes, the Get access rate of the
object is reduced and it moves to the cold-spot status where it
is considered as storage intensive. A similar trend happens
for the Put workload of the object; that is, the Put access rate
decreases as time progresses. Hence, OSNs utilize more net-
work than storage in the early lifetime of the object, and as
time passes they use the storagemore than network.

Therefore, (i) with the given time-varying workloads on
objects, and (ii) storage classes offered by different CSPs with
different prices, acquiring the cheapest network and storage
resources in the appropriate time of the object lifetime plays a
vital role in the cost optimization of the data management
across CSPs. To tackle this problem, cloud users are required
to answer two questions: (i) which storage class from which
CSP should host the object (i.e., placing), and (ii) when the
object should probably be migrated from a storage class to
another owned by the similar or different CSPs.

Recently, several studies take advantage of price differ-
ences of different resources in intra- and inter-cloud

1. Henceforth, Google (Azure) Cloud Storage and Google (Azure)
DC are summarized with G(A)CS and G(A)DC, respectively.

2. RRS (in Google Cloud Storage terminology is called Durable
Reduced Availability (DRA) ) is an Amazon S3 storage option that ena-
bles users to reduce their cost with lower levels of redundancy com-
pared to SS.
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providers, where cost can be optimized by trading off com-
pute versus storage [4], storage versus cache [5], [6], and
cost optimization of data dispersion across cloud providers
[7], [8]. None of these studies investigated the trade off
between network and storage cost to optimize cost of repli-
cation and migration data across multiple CSPs. In addition,
these approaches heavily rely on workload prediction. It is
not always feasible and may lead to inaccurate results, espe-
cially in the following cases: (i) when the prediction meth-
ods are deployed to predict workloads in the future for a
long term (e.g., a year), (ii) for startup companies that have
limited or no history of demand data, and (iii) when work-
loads are highly variable and non-stationary.

Our study is motivated by these pioneer studies as none of
them can simultaneously answer the aforementioned ques-
tions (i.e., placements andmigration times of objects). To address
these questions, wemake the following key contributions:

� First, by exploiting dynamic programming, we for-
mulate offline cost optimization problem in which
the optimal cost of storage, Get, Put, and migration is
calculated where the exact future workload is
assumed to be known a priori.

� Second, we propose two online algorithms to find
near-optimal cost as shown experimentally. The first
algorithm is a deterministic online algorithm with the
competitive ratio (CR) of 2g � 1, where g is the ratio of
the residential cost in the most expensive DCs to the
cheapest ones either in storage or network price. The
second algorithm is a randomized online algorithm
with the CR of 1þ g

w, where w is the available look
ahead window size for the future workload. We also
analyse the cost performance of the proposed algo-
rithms in the form of CR that indicates how much
cost in the worst case the online algorithms incur as
compared to the offline algorithm.

� In addition to the theoretical analysis, an extensive
simulation-based evaluation and performance analy-
sis of our algorithms are provided in the CloudSim
simulator [9] using the synthesized workload based
on the Facebook workload [10].

2 RELATED WORK

We contrast our work in this paper with existing work in the
following five main categories.

Using Multiple Cloud Services. Reliance on a single cloud
provider results in three major obstacles: availability of serv-
ices, data lock-in, and non-economical use [11]. To alleviate
these obstacles, one might use multiple cloud providers that
offer computing, persistent storage, and network services
with different features such as price and performance [12].

Being inspired by these various features, automatic selec-
tion of cloud providers based on their capabilities and user’s
specified requirements are proposed to determine which
cloud providers are suitable in the trade-offs such as cost
versus latency and cost versus performance [13].

Several previous studies attempted to effectively lever-
age multiple CSPs to store data across them. RACS [14] uti-
lized erasure coding to minimize migration cost if either
economic failure, outages, or CSP switching happens. Hadji
[15] proposed several replica placement algorithms to
enhance availability and scalability for encrypted data
chunks while optimizing the storage and communication
cost. None of these systems explore minimizing cost by
exploiting pricing differences across different cloud pro-
viders with several storage classes when dynamic migration
of objects across CSPs is a choice.

Contribution of Our Work to the State of the Art. We here
clarify the motivation behind doing this work via investiga-
tion of the state-of-the-art studies focused on the cost opti-
mization of data in cloud-based data stores.

FCFS framework [6] used two storage services (i.e., a
cache and a storage class) in a single data store. In FCFS,
two online algorithms were used to optimize the deploy-
ment cost of cloud file systems. This framework did not
leverage pricing differences across data stores offered sev-
eral storage classes. The solution deployed in FCFS is not
applicable for our cost optimization problem. This is
because (i) FCFS need not to deal with latency constraint,
potential migration cost, and optimizing writing cost in the
case of eventual consistency setting, and (ii) it makes a deci-
sion just on the time while we require to make a two-fold
decision on time and place dimensions.)

SPANStore [7] optimized cost by using pricing differen-
ces among CSPs while the required latency for the applica-
tion is guaranteed. It used a storage class across CSPs for all
objects without respect to their read/write requests, and
consequently it did not require to migrate objects between
storage classes. SPANStore also leveraged algorithms rely-
ing on workload prediction. Different from SPANStore, our
work utilizes two storage classes offered by different CSPs
to save more cost based on the objects workload. This causes
object migrations between storage classes owned in the
same/different CSPs. Moreover, our two algorithms rely on
a limited/no knowledge of objects workload.

Cosplay [16] optimized the cost of data management
across DCs-belonging to a single cloud-through swapping
the roles (i.e., master and slave) of data replicas owned by
users in the OSN. Similar to SPANStore, it did not leverage
object migration across storage classes. This work can be
orthogonal to our work. Chen et al. [17] investigated the
problem of placing replicas and distributing requests (issued
by users) in order to optimize cost while meeting QoS
requirement in a Content Delivery Network (CDN) utilizing
cloud storage offered by a single CSP. In contrast to our
work, their solution addressed only read-only workloads.

Online Algorithms and Cost Trade-Offs. A number of online
algorithms have been studied to figure out different issues
such as dynamic provisioning in DCs [18], energy-aware
dynamic server provisioning [19] and load balancing among
Geo-distributed DCs [20]. All these online algorithms are
derived from ski-rental framework to determine when a
server must be turned off/on to reduce energy consump-
tion, while we focus on the cost optimization of data storage

TABLE 1
Cloud Storage Pricing as of June 2015 in Different DCs

CSP Amazony Amazonz Google Azure

SS (GB/Month) 0.0330 0.030 0.026 0.030
RRS (GB/Month) 0.0264 0.024 0.020 0.024
Out-Network 0.09 0.09 0.12 0.087
Reduced Out-Network 0.02 0.02 0.12 0.087
Get (Per 100K requests)

$
4.4 4 10 3.6

Put (Per 1K requests) 5.5 5 10 0.036

$The price of Put andGet is multiplicaton of 10�3. All prices are in US dollar.
y Amazon’s DC in California. z Amazon’s DC in Ireland.
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management which comes with different contributing fac-
tors like data size and read/write rates. In FCFS [6], the
same framework is used to optimize data management cost
in a single cloud storage DC that offers cache and storage
with different prices.

The ski-rental deployed in the above studies is not applica-
ble in our model because it makes a decision on time (e.g.,
when a server is turned off/on or when data are moved from
storage to cache), while we need to make a two-fold decision
(time and place) to determine when data should be migrated
and towhichDC(s). Tomake this decision,we propose a deter-
ministic online algorithm that uses Integer Linear Program-
ming (ILP) to optimize cost. We also design a randomized
online algorithm based on Fixed Receding Horizon Control
(FRHC) [19], [21] to conduct dynamic migration of objects. In
[21], the authors proposed online and offline algorithms to
optimize the routing and placement of big data into the cloud
for a MapReduce-like processing, so that the cost of process-
ing, storage, bandwidth, and delay is minimized. They also
consideredmigration cost of data based on required historical
data that should be processed together with new data gener-
ated by a global astronomical telescope application. Instead,
our work focuses on optimizing replicas placement of objects
transiting from hot-spot to cold-spot. Our optimization prob-
lem takes different settings as compared to [17]. These settings
are (i) replicas number, (ii) latency Service Level Objectives
(SLO) for reads and writes, and (iii) variable workloads ( in
terms of reads and writes) on different objects. These objects
demand a dynamic decision on when their replicas are
migrated between two DCs, when they are moved between
two storage classes in a DC, or both. These differences in set-
tings make our optimization problem different in the cost
model (read, write, migration, and storage) and the problem
definition aswell.

Some literature focused on trade-offs between different
resources cost. The first is compute versus storage trade-off
that determines when data should be stored or recomputed,
and can be applicable in video-on-demand services.
Kathpal et al. [4] determined when a transcoding on-the-fly
solution can be cost-effective by using ski-rental framework.
They focused neither on Geo-replicated systems nor theo-
retical analysis on the performance in terms of CR. The sec-
ond trade-off is cache versus storage as deployed in
MetaStorage [5] that made a balance between latency and
consistency. This study has a different goal, and further-
more it did not propose a solution for the cases in which the
workload is unknown. FCFS [6] also made this trade-off as
already discussed. The third trade-off can be bandwidth
versus cache as somehow simulated in DeepDive [22] that
efficiently and quickly identifies which virtual machine
(VM) should be migrated to which server as workload
changes. This study is different in the objective and scope.

Computation and Data Migration. Virtualization partitions
the resources of a single compute server intomultiple isolated
environments which are called virtual machines (VMs). A VM
can be migrated from one host to another in order to provide
fault tolerance, load balancing, system scalability, and energy
saving. VMmigration can be either live or non-live. The former
migration approach ensures almost zero downtime for service
provisioning to the hosted applications during migration,
whereas the latter one suspends the execution of applications
before transferring a memory image to the destination host.
Interested readers are refereed to survey papers [23], [24] for
detailed discussion onVMmigration techniques.

Similarly, datamigration is classified into two approaches.
The first approach is live data migration. This approach allows
that while data migration is in progress, the data is accessible
to users for reads and writes. Although live data migration
approach minimizes performance degradation, it demands
precise coordination when users perform read and write
operations during the migration process [25]. Recently, live
data migration approaches have been exploited for transac-
tional databases in the context of cloud [26], [27].

The second approach is non-live data migration. This
approach is classified into stop and copy and log-based migra-
tion techniques [25]. In both techniques, while the data
migration is in progress, the data is accessible to users for
reads. But, these techniques differ in their capability to handle
writes. In the former, the writes are stopped during data
migration, while in the latter the writes are served through a
log which incurs a monetary cost. Thus, stop and copy and
log-based migration techniques are respectively efficient in
monetary cost and performance criteria. Non-live data
migration approaches is often used in non-transantional
data stores that do not guarantee ACID properties, e.g.,
HBase3 and ElasTraS [28].

There are several factors affecting data migration: the
changes to cloud storage parameter (e.g., price), optimization
requirements, and data access patterns. In response to these
changes and requirements, a few existing studies discuss
data migration from private to public cloud [29], and some
study object migration across public cloud providers [8], [30].
In [8], authors focused on predicting access rate to video
objects and based on this observation, dynamically migrate
video objects (read-only objects). In contrast, our study
attempts to use pricing differences and dynamic migration to
minimize cost with or without any knowledge of the future
workload of objects in terms Gets and Puts.Write requests on
an object raise cost of consistency as a mater. In [30], Mseddi
et al. designed a scheme to create/migrate replicas across
data stores with the aim of avoiding network congestion,
ensuring availability, andminimizing the time of datamigra-
tion. While we designed several algorithms to minimize cost
across data stores with different storage classes.

Deploying Cloud-Based Storage Services in CDN. With the
advent of cloud-based storage services, some literature has
been devoted to utilize cloud storage in a CDN in order to
improve performance and reduce monetary cost. Broberg
et al. [31] proposed MetaCDN which exploits cloud storage
to enhance throughput and response time while ignoring the
cost optimization. Papagianni et al. [32] went one step fur-
ther by optimizing replica placement problem and requests
redirection, while satisfying QoS for users and considering
capacity constraints on disks and network. In [33], there is
another model that minimizes monetary cost and QoS viola-
tion, while guaranteeing SLA in a cloud-based CDN. In con-
trast to these studies proposing greedy algorithms for read-
only workloads, we exploit the pricing differences across
CSPs for time varying writable workloads and propose ffline
and online algorithmswith a theoretical analysis on the CR.

3 SYSTEM MODEL AND PROBLEM DEFINITION

We briefly discuss challenges and objectives of the system,
and then based on which we formulate a data storage

3. https://hbase.apache.org/book.html
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management (data management for short) cost model.
Afterwards, we define an optimization problem based on
the cost formulation and system’s constraints.

3.1 Challenges and Objectives
We assume that the data application includes a set of geo-
graphically distributed key-value objects. An object is an inte-
gration of items such as photos or tweets that share a similar
pattern in the Get and Put access rate. In fact an object in our
model is analogous to the bucket abstraction in Spanner [34]
and is a set of contiguous keys that show a common prefix.
Based on the users’ needs, the objects are replicated at Geo-
distributed DCs located in different regions. Each DC consists
of two types of servers: computing and storage servers.

A computing server accommodates various types of VM
instances for application users. A storage server provides
variety of storage forms (block, key/value, database, etc.) to
users charged at the granularity of megabytes to gigabytes
for very short billing periods (e.g., hours). These servers are
connected by high speed switches and network, and the
data exchange between VMs within DC is free. However,
users are charged for data transfer out from DC on a per-
data size unit as well as a nominal charge per a bulk of Gets
and Puts. We consider this charging method followed by
most commercial CSPs in the system model.

The primary objective of the system is to optimize cost
using object replication and migration across CSPs while it
strives to serve the Gets and Puts in the latency constraint
specified by the application. Providing all these objectives
introduces the following challenges. (i) Inconsistency
between objectives: for example, if the number of replicas

decreases, then the Gets and Puts latency can increase while
storage cost reduces, and vice versa. (ii) Variable workload
of objects: when the Gets and Puts access rate is high in the
early lifetime of an object, the object must be migrated in a
DC with a lower network cost. In contrast, as Gets and Puts
access rate decreases over time, the object must be migrated
in a DCwith a lower storage cost. (iii) Discrepancy in storage
and network prices across CSPs: this factor complicates the
primary objective, andwe clarify it in the below example.

Suppose, according to Table 1, an application stores an
object in Azure’s DC when the object is in hot-spot because
it has the cheapest out-network cost. Assume that after a
while the object transits to its cold-spot and it must migrate
to two new DCs: Amazon’s DC (Ireland) and Google’s DC.
The object migration from Azure’s DC to Amazon’s DC (Ire-
land) is roughly 4 times (0.02 per GB versus 0.0870 per GB )
more expensive than as if the object was initially stored in
Amazon’s DC (California) instead of Azure’s DC. The object
migration from Azure’s DC to Google’s DC is roughly the
same in the cost (0.087 per GB versus 0.09 per GB) as if the
object was initially stored in Amazon’s DC (California)
instead of Azure’s DC. This example shows that the applica-
tion can benefit from the reduced out-network price if the
object migration happens between two Amazon DCs. In one
hand, as long as the object is stored in Azure’s DC, the
application benefits from the cheapest out-network cost,
while it is charged more when the object is migrated to a
new DC. On the other hand, if the object is stored in Ama-
zon’s DC (California), the application saves more cost dur-
ing migration but incurs more out-network and storage
costs. Thus, in addition to storage and out-network costs,
the reduced out-network cost plays an important factor in
the cost optimization for time-varying workloads.

3.2 Preliminaries
In this section, we give some definitions, which are used
throughout the paper. The major notations are also summa-
rized in Table 2.

Definition 1 (DC Specification). The system model is repre-
sented as a set of independent DCs D where each DC d 2 D is
located in region k 2 K. Each DC d is associated with a tuple of
four cost elements. (i) SðdÞ denotes the storage cost per unit size
per unit time (e.g., bytes per hour) in DC d. (ii) OðdÞ defines
out-network cost per unit size (e.g., byte) in DC d. (iii) tgðdÞ and
tpðdÞ represent transaction cost for a bulk of Get and Put
requests (e.g., per number of requests) in DC d, respectively.

Definition 2 (Object Specification). Assume the application
contains a set of objects during each time slot t 2 ½1 . . .T �. Let
rkðtÞ and wkðtÞ, respectively, be the number of Get and Put
requests for the object with size vðtÞ from region k in time slot t.

The objective is to choose placement of object replicas,
and the fraction of rkðtÞ (not the fraction of wkðtÞ since each
Put request must be submitted to all replicas) that should be
served by each replica so that the application cost including
storage, Put, and Get costs for objects as well as their poten-
tial migration cost among DCs is minimized. We thus define
replication variable, requests distribution variable, and applica-
tion cost as follows.

Definition 3 (Replication Variable). adðtÞ 2 f0; 1g indi-
cates whether there is a replica of the object in DC d in time slot
t (adðtÞ ¼ 1) or not (adðtÞ ¼ 0). Thus,

P
d2D adðtÞ ¼ r. We

TABLE 2
Symbols Definition

Symbol Meaning

D A set of DCs
K A set of regions
SðdÞ The storage cost of DC d per unit size per unit time
OðdÞ Out-network price of DC d per unit size
tgðdÞ Transaction price for a bulk of Get (Read)
tpðdÞ Transaction price for a bulk of Put (Write)
T Number of time slots
vðtÞ The size of the object in time slot t
rkðtÞ Read requests number for the object from region k in time

slot t
wkðtÞ Write requests number for the object from region k in time

slot t
r Number of replicas stored across DCs for each object
r The number of DCs in destination set, excluding the intersec-

tion of the source and destination sets
g The ratio of the residential cost in the most expensive DCs to

the cheapest ones in time slot t 2 ½1 . . .T �
� The ratio of the reading volume of the objects to the objects

size
adðtÞ A binary variable indicates whether the object is in DC d in

time slot t or not
bk;dðtÞ A variable indicates the fraction of requests from region k

directed to DC d hosting a replica of an object in time slot t
CRð:Þ Residential cost
CMð:Þ Migration cost
L A upper bound of delay on average for Gets and Puts to

receive response
Tlp Time complexity of linear programming
a The set of all r-combinations of DCs
w The size of available look-ahead window for the future

workload information
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denote~aðtÞ as a vector of adðtÞs which shows if a DC d hosting
a replica or not in the slot time t.

Definition 4 (Request Distribution Variable). The frac-
tion of Get requests issued from region k to DC d hosting
the object in time slot t is denoted by bk;d 2 ð0; 1Þ. Thus,P

k2K
P

djadðtÞ¼ 1bk;dðtÞ ¼ 1. We denote ~bðtÞ as a matrix of
jKj � r which represents the fraction of Get requests issued
from region k 2 K to each replica.

Definition 5 (Storage Cost). The storage cost of an object in
time slot t is equal to the storage cost of all its replicas in DCs d
in time slot t. Thus, we haveX

djadðtÞ¼1
SðdÞ � vðtÞ: (1)

Definition 6 (Get Cost). The Get cost of the object in time slot
t is the cost of Get requests issued from all regions and the net-
work cost for retrieving the object from DCs. Therefore,X

k2K

X
djadðtÞ¼1

bk;d � rkðtÞ � ðtgðdÞ þ vðtÞ �OðdÞÞ: (2)

To keep replicas consistent, we use a simple policy that lev-
erages the primary advantages of eventual consistency set-
ting, which is appropriate for OSNs [7]. Thus, first, to
capitalize on the network services cost, we select DC
djadðtÞ ¼ 1 with the minimum network cost OðdÞ so that the
upper bound of delay for Put requests is met.4 Then, Put
requests issued for the object are sent to this DC and the appli-
cation incurs only Put transaction cost as in-network cost is
free (called initial Put cost). Second, the other replicas are kept
consistent by either DC d or another DC, hosting the replica,
with the lowest network cost without considering delay con-
straint. This DC is responsible for data propagation and is
called propagator DC, that is, dp ¼ mind0 jad0 ðtÞ¼1ðOðd0ÞÞ (called
consistency cost). Note that if any other DC rather than the ini-
tial selection (i.e., d) is selected as the propagator DC, then the
application incurs one extra cost of out-network between
these two DCs. Thus, in addition to the cost of Put transac-
tions, the application is charged for the network cost of data

from the propagator DC. For example, as illustrated in Fig. 1,
assume that the object has been already replicated at four DCs
in the European region. Let the user issue a Put request into
GDC (i.e., DC d). Based on the above strategy, ADC in the
Netherlands is selected as the propagator DC (i.e., DC dp)
because it has the cheapest network cost among these four
DCs and is responsible of updating objects in two other DCs.
Based on the discussed policy, we formally define the Put cost
as below.

Definition 7 (Put Cost). The Put cost of the object in time slot t
is the cost of Put requests issued by all regions and the propaga-
tion cost for updating replicas of the object. Thus,

cðd; dpÞ þ
X
k2K

"
ðwkðtÞ � tpðdÞ

þ
X

d0jad0 ðtÞ¼1nfd;dpg
wkðtÞ � ðtpðd0Þ þ vðtÞ �OðdpÞÞ

#
;

(3)

where (i) cðd; dpÞ is the transfer cost between d and dp and is
equal to

P
k w

kðtÞ � ðvðtÞ �OðdÞ þ tpðdpÞÞ, and (ii) d0 is a
DC, excluding d and dp, that hosts a replica. Note that if
d ¼ dp, then cðd; dpÞ ¼ 0. In Equation (3), wkðtÞ � tpðdÞ is
initial Put cost and the second sigma is the consistency cost.

Definition 8 (Residential Cost). The residential cost of the
object in time slot t is the summation of its storage, Get, and
Put costs (Equations (1), (2), and (3)) and is denoted by
CRð~aðtÞ;~bðtÞÞ.
The best set of DCs to replicate an object can differ in t

and t� 1. In other words, ~aðt� 1Þ and ~aðtÞ are different.
This happens because the object size, the number of
requests, and the source of requests to conduct Gets or Puts
would change in different time slots. Thus, if the object is in
hot-spot, it is more cost-effective to replicate it at a DC with
a lower network cost as long as the object is in this state. In
contrast, if the object transits from hot-spot to cold-spot and
grows in size, it is more profitable to migrate the object to
DC(s) with a lower storage cost. Object replication based on
the status of the object across DCs imposes a migration cost
on the application. To minimize it, the object should be
migrated from the DC with the lowest network cost. We
thus consider two sets of DCs: one set contains DCs that the
object must be migrated from (called source set), and the
other set that the object must be migrated to (called destina-
tion set). The policy, first, determines the DC with the lowest
network cost in each set and the first replica migration hap-
pens between these two selected DCs. For other replicas,
replication is carried out from the cheapest of these two.

To clarify this simple policy, we describe an example as
shown in Fig. 1. Assume the object must be migrated from
DCs in the source set to those in the destination set. Since
ADC in Singapore has the cheapest network price among
DCs in the source set, it is responsible to send the object to
GDC in Taiwan. This is because this GDC has the lowest
rate in the network price in the destination set. Then, S3 in
Japan receives the object from GDC since it is cheaper than
ADC in Singapore. Based on the above discussion, the
migration cost is defined as:

Definition 9 (Migration Cost). If ~aðtÞ 6¼~aðt� 1Þ, the appli-
cation incurs the migration cost in time slot t that is the multi-
plication of the object size and the out-network cost of the DC

Fig. 1. Object updating in Europe region and the object migration in Asia-
pacific region.

4. From this point onward, whenever the migration or data transfer
happens between two Amazon DCs, the reduced network cost is con-
sidered rather than the network cost.
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hosting the object in time slot t� 1. The migration cost of object
denoted by CMð~aðt� 1Þ;~aðtÞÞ includes the migration cost from
the DC ds ¼ mindjadðt�1Þ¼1OðdÞ to dd ¼ mindjadðtÞ¼1OðdÞ and
the object is then replicated from the DC dpm ¼ minðOðdsÞ;
OðddÞÞ to all remaining DCs in the destination set if they are
not in the source set. We denote by r as the number of DCs in
destination set, excluding the intersection of the source and des-
tination sets. Thus,

CMð~aðt� 1Þ;~aðtÞÞ ¼ vðtÞ � ðOðdsÞ þOðdpmÞ � ðr� 1ÞÞ:
(4)

The discussed policy uses the stop and copy technique, in
which the application is served by the source set for Gets
and destination set for Puts during migration [26]. This
technique is used by the single cloud system such as HBase5

and ElasTraS [28], and in Geo-replicated system [25]. As we
desire to minimize the monetary cost of migration, we use
this technique in which the amount of data moved is mini-
mal as compared to other techniques leveraged for live
migration at shared process level of abstraction.6 We believe
that this technique does not affect our system performance
due to (i) the duration of migration for transferring a bucket
(at most 50 MB, the same as in Spanner [34]) among DCs is
considerably low, and (ii) most of Gets and Puts are served
during the hot-spot status, and consequently the access rate
to the object during the migration, which is happening in
the cold-spot status, is considerably low based on the access
pattern. We point out this with more details in Section 6.7

Now, we define the total cost of the object in time slot t
based on Equations (1), (2), (3), and (4) as

Cð~aðtÞ;~bðtÞÞ ¼ CRð:Þ þ CMð:Þ: (5)

Besides the cost optimization, satisfying the low latency
response to Put/Get requests is a vital performance measure
for the application. Our model respects the latency Service
Level Objective (SLO) for Get/Put requests, and the latency
for a Get and Put request is calculated by the delay between
the time a request is issued and the time acknowledgement
is received. Since the Get and Put requests time for small
size objects is dominated by the network latency, similar to
[7] and [35], we estimate latency by the Round Trip Time
(RTT) between the source and destination DCs. Let lðk; d0Þ
denote this latency, and L define the upper bound of delay
for Get and Put requests on average to receive response. We
generally define the latency constraint for Get and Put
requests as a constraint lðd; d0Þ � L, where d stands for the
associated DC in the region k. This performance criterion
will be integrated in the cost optimization problem dis-
cussed in the next section.

We also make some assumptions in the case of occurring
failure and conducting Put and Get requests in the system.
It is assumed that DCs are resistant to individual failures
and communication links between DCs are reliable due to
using redundant links [34]. In our system, a Put and Get is
considered as a complete request once the request success-
fully conducted on one of the replicas. For the Put, this

assumption suffices due to durability guarantees offered by
the storage services. During migration process, if either
source or destination DC fails, then the system can either
postpone data migration for a limited time or re-execute the
algorithms without considering the failed DC(s).

3.3 Optimization Problem
Given the system’s input and the above cost model, we
define the objective as the determination of the value of~aðtÞ
and ~bðtÞ in each time slot so that the overall cost for all
objects during t 2 ½1 . . .T � is minimized. We define the over-
all cost minimization problem as

min
~aðtÞ;~bðtÞ

X
t

Cð~aðtÞ;~bðtÞÞ; (6)

s.t. (repeated for 8t 2 ½1 . . .T �; 8d 2 D and 8k 2 K)

(a)
P

d2D adðtÞ ¼ r;adðtÞ 2 f0; 1g
(b)

P
k2K

P
djadðtÞ¼1 b

k;dðtÞ ¼ 1; bk;dðtÞ 2 ð0; 1Þ
(c) bk;dðtÞ � adðtÞ;
(d)

P
k2K

P
d2D adðtÞ�rk�lðk;dÞP

k2K rk
� L;

(e) lðk; d0Þ � L; d0 ¼ mindjadðtÞ¼1OðdÞ and 8 Put request:
In the above optimization problem, constraint (a) indi-

cates that only r replicas of the object exist in each time slot
t. Constraint (b) ensures that all requests are served, and
constraint (c) guarantees that each request for the object is
only submitted to the DC hosting the object. Constraints (d)
and (e) enforce the average response time of Get and Put
requests in range of L respectively.

To solve the above optimization problem, we propose
three algorithms as a part of the Replica Placement Manager
(RPM) system (Fig. 2) to optimize cost based on two inputs:
DCs specifications and application requirements.

4 OPTIMAL OFFLINE ALGORITHM

To solve the Cost Optimization Problem, we should find val-
ues of~aðtÞ and~bðtÞ so that the overall cost in Equation (6) is
minimized.8 So, we propose a dynamic programming algo-
rithm to find optimal placement of replicas (i.e., ~a�ðtÞ) and
optimal distribution of requests to replicas (i.e.,~b�ðtÞ) for all
objects during t 2 ½1 . . .T �. Based on the above problem defi-
nition, ~bðtÞ in time slot t can be simply determined using a
linear programming once the value of~aðtÞ is fixed.

Let ~a ¼ f~a1;~a2; ::;~ai; ::;~a
jDj
rð Þg denote all r-combinations

of distinct DCs can be chosen from D (i.e, j~aj ¼ jDj
r

� �
). Sup-

pose that the key function of the dynamic algorithm is

P ð~aðtÞÞ that indicates the minimum cost in time slot t if the
object is replicated at a set of DCs that is represented by~aðtÞ.

The corresponding P ð~aðtÞÞ to each entry of table in Fig. 3
should be calculated for all t 2 ½1 . . .T � and for all elements

Fig. 2. Overview of systems’s inputs and output.

5. https://hbase.apache.org/book.html
6. In transactional database in the context of cloud, to achieve elastic

load balancing, techniques such as stop and copy, iterative state replication,
and flush and migrate in the process level are used. The interested read-
ers are refereed to [26] and [27].

7. Note that our system is not designed to support database transac-
tions, and this technique just inspired from this area.

8. Note that the constraints (a-e) in Equation (6) is repeated for all
cost calculation equations, unless we mentioned.
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of ~a. In the following, we derive a general recursive equa-
tion for P ð~aðtÞÞ.

As illustrated in Fig. 3, to calculate P ð~aðtÞÞwe first need to
compute residential cost (i.e., CRð:Þ) and migration cost (i.e.,
CMð:Þ ) between ~aðt� 1Þ and ~aðtÞ. Second, to obtain this
migration cost, we enumerate over all possible~aðt� 1Þ con-
taining the object in time slot t� 1. Thus, the cost P ð~aðtÞÞ is
the minimum of the summation of the cost Cð~aðtÞ;~bðtÞÞ in
Equation (5) and P ð~aðt� 1ÞÞ. The termination condition for
the recursive equation P ð~aðtÞÞ is P ð~aðtÞÞ ¼ 0 for t ¼ 0, mean-
ing there is no placement for the object. Combining all above
discussions, we obtain the general recursive equation as

P ð~aðtÞÞ ¼
min

8~aðt�1Þ2~a
½P ð~aðt� 1ÞÞ þ Cð~aðtÞ;~bðtÞÞ�; t > 0

0 t ¼ 0

(
: (7)

Once P ð~aðtÞÞ is calculated for all ~aðtÞ 2 ~a during t 2
½1 . . .T �, the minimum cost for the object ismin~aðtÞ2~aP ð~aðtÞÞ in
time slot t ¼ T . The optimal placement of replicas for the
object in time slot t 2 ½1 . . .T �,~a�ðtÞ, is the corresponding~aðtÞ
on the path leading to the minimum value of P ð~aðtÞÞ in time
slot t ¼ T . The request distribution related to~a�ðtÞ in time slot
t is determined by ~b�ðtÞ using a linear programming. Since
this algorithm requires the exact knowledge of workload and
demands high time complexity,9 we design the following
online algorithms.

Algorithm 1. Optimal Offline Algorithm

Input: RPM’s inputs as illustrated in Fig. 2
Output: ~a�ðtÞ, ~b�ðtÞ, and the optimized overall cost during

t 2 ½1 . . .T �
1 ~a Calculate all r�combinations of distinct DCs fromD.
2 Initialize: 8~að0Þ 2~a, P ð~að0ÞÞ ¼ 0
3 for t 1 to T do
4 for all~aðtÞ 2~a do
5 for all~aðt� 1Þ 2~a do
6 Calculate P ð~aðtÞÞ based on Equation (7).
7 end forall
8 end forall
9 end
10 Find a sequence of~aðtÞ and~bðtÞ such that leading to

min~aðtÞ2~aðP ð~aðtÞÞ in time slot t ¼ Tas the optimized
overall cost (Equation (6)). This sequence of~aðtÞ
and~bðtÞ are~a�ðtÞ and~b�ðtÞ.

11 Return~a�ðtÞ,~b�ðtÞ, and the optimized overall cost.

5 ONLINE ALGORITHMS

The optimal offline algorithm as its name implies is optimal
and can be solved offline. That is, with the givenworkload, we
can determine the optimal placement of objects in each time
slot t. However, offline solutions sometimes are not feasible for
twomain reasons: (i) we probably do not have a priori knowl-
edge of the future workload especially for start-up firms or
those applications whose workloads are highly variable and
unpredictable; (ii) the proposed offline solution suffers from
high time complexity and is computationally prohibitive.
Thus, we present online algorithms to decidewhich placement

is efficient for object replicas in each time slot t when future
workloads are unknown. Before proposing online algorithms,
we formally define the CR that is widely accepted to measure
the performance of the online algorithms.

Definition 10 (Competitive Ratio). A deterministic online
algorithm DOA is c-competitive iff 8I, CDOAðIÞ=COPT ðIÞ � c,
where CDOAðIÞ is the total cost for input I by DOA, and
COPT ðIÞ is the optimal cost to serve input I by the optimal offline
algorithm OPT. Similarly, a randomized online algorithm ROA
is c-competitive iff 8I,E½CROAðIÞ�=COPT ðIÞ � c.

5.1 The Deterministic Online Algorithm
We propose an online algorithm based on the total cost
Cð~aðtÞ;~bðtÞÞ consisting of two sub-costs: residential and
migration costs. These two sub-costs of the object can poten-
tially appear as an overhead cost for the application if the
migration of the object happens at inappropriate time(s).
Frequent migration of the object causes the object to be
moved much more than the optimal number of migrations
between DCs. Thus, the total cost of application exceeds its
optimal cost. An upper bound of this cost happens when
the optimization problem is solved in time slot t without a
priori knowledge of the future workload and considering
the location of the object in previous time slot t� 1. In con-
trast, a lower number of migrations leads to stagnant objects
that they might not be migrated even to a new DC imposing
a lower cost to the application. Thus, the residential cost
surpasses the optimal residential cost. The upper bound of
the residential cost happens when there is no migration.

To avoid these issues, the algorithm makes a trade-off
between two costs, residential and migration, in the absence
of the future workload knowledge. The intuitive idea
behind this algorithm is that 1) migration only happens
when it causes cost saving in the current time slot and 2) the
summation of the lost cost savings opportunities from the
last migration (i.e., tm) is larger or equal to the migration
cost. This intuition causes to strike a balance between fre-
quent and rare migration.

Assume that tm denotes the last time of migration for the
object. Let the migration cost between two consecutive
migrations times (i.e., tm�1 and tm) be defined by CM

ð~aðtm�1Þ;~aðtmÞÞ. For each time slot t, we calculate the resi-
dential cost of the object in v 2 ½tm; tÞ for two cases: (i) the

Fig. 3. The description of P ð~aðtÞÞ calculation in Equation (7).

9. The time complexity of all algorithms in this paper is discussed in
Appendix C,which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TCC.2017.2659728.
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residential cost of the object as if it is in the DCs that are
determined in time slot v� 1 and the requests issued to the
object in time slot v are served by these DCs. This cost is
defined by CRð~aðv� 1Þ;~bðvÞÞ (see Fig. 4a10), and (ii) the resi-
dential cost of object as if the object is migrated to new DCs
that are determined in time slot v and the requests for the
object are served by the chosen new DCs. This cost is termed
by CRð~aðvÞ;~bðvÞÞ (see Fig. 4b). Now, for each of the follow-
ing time slot v, we calculate the summation of the difference
between the above residential costs (i.e., (i) and (ii)) from
time v ¼ tm to v ¼ t� 1, which is

Pt�1
v¼tm ½CRð~aðv� 1Þ;

~bðvÞÞ � CRð~aðvÞ;~bðvÞÞ�. Based on the above calculated resi-
dential cost and migration cost (i.e., CMð~aðtm�1Þ;~aðtmÞÞ-see
Fig. 4c), in the current time slot t, the algorithm makes a
decision whether the object should be migrated to new DCs
or not. The object is migrated to new DCs in time slot t if the
two following conditions are simultaneously met.

1) The object has the potential to be migrated to a new
DC if

CMð~aðtm�1Þ;~aðtmÞÞ

�
Xt�1
v¼tm
½CRð~aðv� 1Þ;~bðvÞÞ � CRð~aðvÞ;~bðvÞÞ�:

(8)

Otherwise, the object certainly stays in the previous
DCs determined in time slot t� 1.

2) As earlier noted, to avoid migrating the object back
and forth between DCs, we enforce the following
condition:

CMð~aðtmÞ;~aðtÞÞ þ CRð~aðtÞ;~bðtÞÞ � CRð~aðt� 1Þ;~bðtÞÞ: (9)

This constraint means that the overall cost of the object in
the new DCs in time slot t including the residential and
migration costs should be less than or equal to the cost of
the object if it stays in the chosen DCs in time slot t� 1.

Based on the above discussion, Algorithm 2 formulates the
deterministic online algorithm. The algorithm first finds all
r�combinations of distinct DCs that can be chosen from D
(line 2). Then, for each object in time slot t ¼ 1, it determines
the best placement of replicas of the object and also the

proportion of requests that must be served by these replicas
so that CRð~aðtÞ;~bðtÞÞ is minimized (line 3). After that the
migration time tm is set to 1 (line 4). For all t 2 ½2 . . .T � (line 5),
~aðtÞ and~bðtÞ are calculated for all~aðtÞ 2 ~a so that the residen-
tial costCRð~aðtÞ;~bðtÞÞ isminimized (lines 6-9). Based onEqua-
tions (8) and (9), if the newDC chosen in time slot t is different
with that of time slot t� 1, the object migration happens (lines
10-13). Otherwise, the object stays in the DC that is selected in
time slot t� 1, i.e.,~aðtÞ ¼ vecaðt� 1Þ (line 15).

We now analyze the performance of the deterministic
algorithm in terms of CR. The key insight behind the algo-
rithm lies in Equations (8) and (9) to make trade off between
frequent and infrequent migrations of objects among DCs.
According to these equations, we first calculate the upper
bound for the migration cost in ½1 . . . t� and then derive the
CR of the algorithm.

Lemma 1. The upper bound of the migration cost between two
consecutive migration times (tm�1; tm) during ½1; t� is g times
of the minimum residential cost in this time period. g is the
ratio of the residential cost in the most expensive DC to the
cheapest one in v 2 ½1 . . . t�.

Proof. See Appendix A, available in the online supplemen-
tal material. tu

Theorem 1. Algorithm 2 is ð2g � 1Þ�competitive. Formally, for
any input, CDOA=COPT � 2g � 1.

Proof. See Appendix A, available in the online supplemen-
tal material. tu
The value of g is the ratio of the residential cost between

the most expensive DC to the cheapest one in the network
cost in hot-spot or storage cost in cold-spot during its life-
time. Thus, if the object is read intensive (i.e., it is in hot-
spot), the value of g ¼ maxd 6¼d0OðdÞ=Oðd0Þ. Otherwise, if
object is storage intensive (i.e., it is in cold-spot), then g ¼
maxd 6¼d0SðdÞ=Sðd0Þ. Generally, if the volume of the object to
be read is � times of the object size, then g ¼ maxd6¼d0 ðSðdÞþ
�OðdÞÞ=ðSðd0Þ þ �Oðd0ÞÞ.

Algorithm 2. Determinstic Online Algorithm (DOA)

Input: RPM’s inputs as illustrated in Fig. 2
Output:~aðtÞ,~bðtÞ, and the overall cost denoted Cove

1 Cove  0
2 ~a Calculate all r�combinations of distinct DCs fromD.
3 Cove  Determine~aðtÞ and~bðtÞ by minimizing
CRð~aðtÞ;~bðtÞÞ for all~aðtÞ 2~a in time slot t ¼ 1.

4 tm  1
5 for t 2 to T do
6 for all~aðtÞ 2~a do
7 CRð:Þ  Determine~aðtÞ and~bðtÞ by minimizing

CRð~aðtÞ;~bðtÞÞ
8 Cove  Cove þ CRð:Þ
9 end forall
10 if (Equations (8) and (9), and~aðt� 1Þ! ¼~aðtÞ ) then
11 tm  t
12 CMð:Þ  calculate CMð~aðtm�1Þ;~aðtmÞÞ
13 Cove  Cove þ CMð:Þ
14 else
15 ~aðtÞ  ~aðt� 1Þ
16 end
17 end
18 Return~aðtÞ,~bðtÞ, and Cove.

Fig. 4. The description of deterministic online algorithm. The residential
cost of the object as if the requests on the object in slot v ¼ t are served
by (a) the determined DCs in time slot v� 1 and (b) the determined DCs
in time slot v. (c) The migration cost of the object between the deter-
mined DC in time slot v ¼ tm�1 and tm.

10. In this figure, without loss of generality, we consider only one
DC that hosts an object (i.e., r ¼ 1).
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5.2 The Randomized Online Algorithm
It is expected that the randomized algorithms typically
improve the performance in terms of CR to their deter-
ministic counterparts. In the following, we design a ran-
domized online algorithm based on the subclass of
Reducing Horizon Control (RHC) algorithms, which is
called Fixed RHC (FRHC) [19]. RHC is a classical control
policy that is used for dynamic capacity provisioning in a
DC [18], [19], load balancing on a DC [20], and moving
data into a DC [21].

In our algorithm, the time period T is divided into dT=we
frames, where each frame has a size of w time slots. It is
assumed that in the first time slot (i.e., ts) of each frame, the
workload in terms of Get and Put requests, and data size is
known for the next ts þ w time slots. Due to available future
workload knowledge for the time frame ½ts; ts þ w�, we can
calculate the optimal cost for this time frame. To do so, we
re-write the cost optimization problem based on Equation (6)
for the time frame ½ts; ts þ w� (i.e., Equation (10)) and solve it
by usingAlgorithm 1 to calculate the optimal cost

min
~aðtÞ;~bðtÞ

Xtsþw
t¼ts

Cð~aðtÞ;~bðtÞÞ: (10)

The first time slot (i.e., ts) of the first frame can be started
from different initial time l 2 ½1; w�, which indicates different
versions of the FRHC algorithm. For each specific FRHC
algorithm with value l, an adversary can determine an input
with a surge in Get and Put requests and produce a large size
of data. These can result in increasing migration cost and
degrading the cost performance of the algorithm. A random-
ized FRHC defeats this adversary with determining the first
time slot of the first frame by a random integer 1 � l � w.

Thus, the first slot of the first frame falls between 1 and w.
The following frames are considered with the same size of w
time slots sequentially. Assuming T is divisible by w, it is
clear that if l 6¼ 1, then there are dT=we � 1 full frames and
two partial frames that consist of l and w� l time slots. Fig. 5
shows partial and full frames when the algorithm randomly
selects the first slot of the first frame with the value of l ¼ 2,
where T ¼ 9 and w ¼ 3. It also shows different versions of
randomized FRHC for values of 1 � l � 3.

Based on the above discussion, we design the random-
ized algorithm and solve the optimization problem, i.e.,
Equation (10) according to Algorithm 3 for partial and full
frames. In the randomized algorithm, first, we randomly
choose l 2 ½1; w� as ts of the first frame. If l 6¼ 1, then we cal-
culate the residential cost over two partial frames with the
size of l and w� l time slots (lines 2-5). For the full frames,
we compute overall cost consisting residential and migra-
tion costs for each full frame and migration cost between
consecutive full frames (lines 6-11). Finally the migration
cost between the last full frame and its next partial frame is
determined if l 6¼ 1 (lines 12-15).

We now analyze the performance of the randomized
online algorithm in terms of CR as follows.

Lemma 2. The upper bound cost of each frame is the offline opti-
mal cost plus the migration cost of objects from DCs determined
by randomized FRHC to those specified by the offline algorithm.

Proof. The proof is given in Appendix B, available in the
online supplemental material. tu

Theorem 2. Algorithm 3 is (1þ g
w)-competitive. Formally, for

any input CROA=COPT � ð1þ g
wÞ.

Proof. The proof is given in Appendix B, available in the
online supplemental material. tu
Based on computed g in section 6.3.1, the randomized

algorithm leads to a CR of 1þ 1:52
w , depending on the value

of w, and achieves to better cost performance compared
with its counterpart.

Algorithm 3. Randomized Online Algorithm (ROA) with
Available Future Workload Information for w Time Slots

Input: RPM’s inputs as illustrated in Fig. 2
Output:~aðtÞ,~bðtÞ, and the overall cost denoted Cove

1 l random number within ½1; w�; Cove  0
2 if l 6¼ 1 then
3 Cove  solve Equation (10) over widows ½1; l� and ½T � l�
4 tm ¼ lþ 1
5 end
6 for t l to T � lþ 1 do
7 Cove  Coveþ solve Equation (10) over widows ½l; lþ wÞ
8 CM  solve Equation (4) for ðtm�1; tmÞ
9 Cove  Cove þ CM , tm ¼ lþ wþ 1
10 t tþ w
11 end
12 if l 6¼ 1 then
13 CM  solve Equation (4) for ðtm�1; tmÞ
14 Cove  Cove þ CM

15 end
16 Return~aðtÞ,~bðtÞ, and Cove

6 PERFORMANCE EVALUATION

We evaluate the performance of the algorithms via simula-
tion using the CloudSim discrete event simulator [9] and
the synthesized workload based on the Facebook workload
[10]. Our aims are twofold: we measure (i) the cost savings
achieved by the proposed algorithms relative to the bench-
mark algorithms, and (ii) the impact of different values of
parameters on the algorithms’ performance.

6.1 Settings
We use the following setup for DC specifications, objects
workload, delay constraints, and experiment parameters
setting.

DCs specifications: We span DCs across 11 regions11 in
each of which there are DCs from different CSPs. There are
23 DCs in the experiments. We set the storage and network
prices of each DC as specified in June 2015. Note that we
use the price of SS and RRS during hot-spot and cold-spot
status of objects respectively. The object is transited from

Fig. 5. Illustration of fixed reduced horizontal control.

11. California, Oregon, Virginia, Sao Paulo, Chile, Finland, Ireland,
Tokyo, Singapore, Hong Kong and Sydney.
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hot-spot to cold-spot when about 3/4 of its requests have
been served [36]. These many requests are received within
the first 1/8 of the lifetime of the object, which is considered
as the hot-spot status for the object [36].

Objects workload: It comes from the Facebook workload
[10] in three terms: (i) the ratio of Get/Put requests is
assigned to 30, (ii) the average size of each object retrieved
from the bucket (recall the definition of bucket in Section 3)
is 1 and 100 KB on average12 [7], and (iii) the pattern for Get
rate to retrieve items follows long-tail distribution such that
3/4 of those Gets happen during 1/8 of the initial lifetime of
the bucket [36]. We synthetically generate the Get rate of
each bucket based on Weibull distribution that follows the
above mentioned pattern. The number of Get operations for
each bucket is randomly assigned with the average of 1,250.
The low and high Get rate implies that the bucket contains
the objects belonging to users whose profiles are accessed
frequently and rarely respectively (i.e., this category of users
has a low and high number of friends respectively).

Delay Setting: The round trip time delay between each
pair of DCs is measured based on the formula RRT ðmsÞ ¼
5þ 0:02�DistanceðkmÞ [37]. The latency L-a user can toler-
ate to receive a response of Get/Put requests-is 100 ms (i.e.,
tight latency) and 250 ms (i.e., loose latency). A latency
higher than 250 ms deteriorates the user’s experience on
receiving Get/Put response [38].

Experiment Parameters Setting: In the experiments, we set
the following parameters. The overall size of objects is 1 TB
and the size of each bucket is initially 1 MB, which grows to
50 MB during the experiments. The number of replicas is set
to 1 and 2 [39]. The unit of the time slot (as wellw) is one day.
We set w ¼ 4 by default, where the randomized algorithm is
superior to the deterministic algorithm in the cost saving,
except for large objectswith two replicas under loose latency.
We vary w to examine its impact on the cost saving. In all
workload settings, we compute cost over a 60-day period.

6.2 Benchmark Algorithms
We propose two benchmark algorithms to evaluate the
effectiveness of the proposed algorithms in terms of cost.

Non-Migration Algorithm: This is shown in Algorithm 4
and minimizes the residential cost CRð:Þ with all constraints
in Equation (6) such that objects are not allowed to migrate
during their lifetime. This algorithm, though simple, is the
most effective measure to show the impact of object migra-
tion on the cost saving (see Section 6.3.5).

Local Residential Algorithm: In this algorithm, an object is
locally replicated at a DC located in the region that issues
most Get and Put requests for the object and also in the clos-
est DC(s) to that DC if the need for more replicas arises. All
the incurred costs are normalized to the cost of local residen-
tial algorithm, unless otherwise mentioned.

Algorithm 4. The Non-Migration Algorithm

Input: RPM’s inputs as illustrated in Fig. 2
Output:~aðtÞ,~bðtÞ, and the overall cost
1 ~a Calculate all r�combinations of distinct DCs fromD.
2 Calculate

PT
t¼1 CRð~aðtÞ;~bðtÞÞwith all constraints in

Equation (6) for all~aðtÞ 2~a, and then select~aðtÞ as the
location of the object from t ¼ 1 to T so that the above
computed cost is minimized. This cost is the overall cost.

3 Return~aðtÞ,~bðtÞ, and the overall cost.

6.3 Results
We start by evaluating the performance of algorithms
relative to the above benchmark algorithms.

6.3.1 Cost Performance

The cost performance of all algorithms through simulations
is presented in Figs. 6 and 7, where the CDF of the normal-
ized costs13 are given for small and large objects with r=1,2
under tight and loose latency. The general observation is that
all algorithms witness significant cost savings compared
with the local residential algorithm. As expected, the results,
in term of average cost saving (see Table 3), show that Opti-
mal outperforms Randomized, which in turn is better than
Deterministic (apart from the abovementioned exception).

Fig. 6a illustrates the results for small objects under tight
latency. Optimal saves atmost 20 percent of the costs for about
71 percent of the objects, and the online algorithms cut 10 per-
cent of the costs for about 60 percent of the objects. In contrast,
the results also show that the application incurs at most 10
percent more costs for about 20 percent of the objects by using
Deterministic, and likewise at most 20 percent more costs for
about 30 percent of the objects by using Randomized. Fig. 6b
depicts the results for large objects under tight latency. We
can observe that Optimal cuts costs for more than 95 percent
of the objects, while this value reduces to about 80 percent of
the objects in online algorithms. The cost savings for objects in
Optimal, Deterministic, and Randomized are respectively 15,

Fig. 6. Cost performance of algorithms under tight and loose latency for objects with a replica. All costs are normalized to the local residential algo-
rithm. The values in boxes show the CR of DOA and ROA in the worst case.

12. Henceforth, the object with size 1 and 100 KB on average are
called small and large object respectively.

13. Note that as normalized cost is smaller, we save more
monetary cost.
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14 and 13 percent. Based on comparison between results in
Figs. 6a and 6b, we realize online algorithms remain highly
competitive with the optimal algorithm in cost savings for
large objects. This happens due to the fact that the migration
of large objects in both online and offline algorithms happens
roughly at the same time.

Figs. 6c and 6d show the results for small and large
objects under loose latency. The algorithms cut the costs for
about 78 percent of the small objects (Fig. 6c) and for about
100 percent of large objects (Fig. 6d). On the average, from
Table 3, Optimal, Deterministic, and Randomized respec-
tively gain cost savings around 13, 10 and 11 percent for
small objects, and correspondingly 23, 17 and 21 percent for
large objects. From these results in Figs. 6c and 6d to those
in Figs. 6a and 6b, we observe that all algorithms are more
cost effective under loose latency in comparison to tight
latency. The reason is that: (i) there is a wider selection of
DCs available with a lower cost in storage and network
resources under loose latency in comparison to tight
latency, and (ii) the application can benefit from the large
objects migration more than the small objects migration).

The results in Fig. 7 reveal that the cost performance of
algorithms for objects with two replicas. By using online algo-
rithms, the application witnesses the following cost savings.
As illustrated in Figs. 7a and 7c, the application can reduce
costs for about 90 and 95 percent of the small objects under
loose and tight latency respectively. For these objects, Ran-
domized andDeterministic under loose latency (resp., under
tight latency) reduce the cost by 7 and 9 percent (resp., 10
and 12 percent) on average (see Table 3). As shown in
Figs. 7b, 7d and Table 3, for large objects, the cost savings of
two online algorithms become very closewhileDeterministic
is slightly better than Randomized in average cost savings.
Under tight latency, the application receives 10 and 9 percent
of cost savings by using Deterministic and Randomized,
respectively, while under loose latency, the application saves

the cost (around 14 percent on average) by using each of
online algorithm. This slight superiority of Deterministic
over Randomized shows that we need to choose w > 4 in
order to allow Randomized to outperform Deterministic for
this setting (i.e., r=2, for large objects under tight latency). By
using the optimal offline algorithm, we observe the following
results in Fig. 7. The application achieves cost savings for all
objects with two replicas, while it is not the same for all
objects with one replica (see Figs. 6a and 6c). On average, the
application using Optimal reduces cost for small objects
(resp., for large objects) by about 12 and 13 percent (resp., 12
and 16 percent) under loose and tight latency respectively.

Besides the above experimental results, we are interested
to evaluate the performance of online algorithms in terms of
CR values discussed in Appendix A and B, available in the
online supplemental material. For this purpose, we compare
the value of CR obtained in theory with that of the experi-
mental results in Figs. 6 and 7. To calculate the theoretical
value of CR, we require the value of g. Under the storage
and network price used in the simulation, the gap between
the network prices is more than that of between the storage
prices of the same DCs in this case. The highest gap is
between GCS and ACS with value 0.21 and 0.138 per GB,
respectively, in the Asia- Pacific region, which results in g=
1.52. Thus, by Theorem 1 and the value of g, the determin-
istic algorithm will lead to at most 2.04 times the optimal
offline cost. And, by Theorem 2 and the value of g, the ran-
domized algorithm incurs at most 1.38 (note that the value
of w is 4 in all experiments). The corresponding CR for each
experimental result in Figs. 6 and 7 is shown in a box at the
bottom of each figure. This value of the CR is the highest
among all objects incurred by the online algorithms. All CR
values obtained from experimental results are lower than
those theoretical values as the object migrations conducted
by the proposed algorithms does not necessarily occur
between DCs with the highest and the lowest price in the

Fig. 7. Cost performance of algorithms under tight and loose latency for objects with two replicas. All costs are normalized to the local residential
algorithm. The values in boxes show the CR of DOA and ROA in the worst case.

TABLE 3
Average Cost Performance (Normalized to the Local Residential Algorithm)

Latency=100 ms Latency=250 ms

Replicas Number Object Size Optimal Deterministic Randomized Optimal Deterministic Randomized

r=1 1 KB 0.9030 0.9694 0.9469 0.8778 0.9075 0.8974
100 KB 0.8561 0.8734 0.8657 0.7758 0.8369 0.7997

r=2 1 KB 0.8879 0.9330 0.9181 0.8787 0.9045 0.8866
100 KB 0.8831 0.9045 0.9127 0.8440 0.8625 0.8636
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network. Therefore, the online algorithms remain highly
competitive in comparison to the optimal offline algorithm
in the worst case in all experiments.

6.3.2 The Effect of Latency on Cost Saving

In this experiment, we evaluate the cost performance of
algorithms when the latency is varied from 50 to 250 ms.
First, as shown in Figs. 8a and 8b, the normalized cost of all
algorithms reduces when the latency increases. The reason
is that when the latency is 50 ms, most objects are locally
replicated at DCs; as a result normalized cost is high. As
latency increases, algorithms can place objects in remote
DCs which are more cost-effective, and hence the normal-
ized cost declines. For example in Fig. 8a, as latency
increases from 50 to 250 ms, the cost savings for Optimal,
Deterministic, and Randomized rises from 3-10, 6-11 and
10-13 percent, respectively, for small objects, and likewise
13-17, 14-22 and 15-23 percent for large objects. Second, as
we expected, Optimal outperforms Randomized, which in
turn is better than Deterministic in normalized cost exclud-
ing the mentioned exception (see Fig. 8b for large objects).
This exception implies that we need to use w > 4 to achieve
better performance of Randomized compared to that of
Deterministic. Third, we observe that the decline in the cost
savings for large objects is more steep than those of small
objects when latency increases (Fig. 8b).

6.3.3 The Impact of Read to Write Ratio on Cost Saving

We plot the effect of read to write ratio, varying from 1
(write-intensive object) to 30 (read-intensive object), on the

normalized cost for small and large objects under tight and
loose latency in Fig. 9. We observe the following results.

(i) There is a hierarchy among algorithms in the normal-
ized cost, where Optimal is better than Randomized, which
in turn, outperforms Deterministic, excepts for large objects
with two replicas. In this exception, Deterministic saves
1 percent more cost than Randomized with w ¼ 4, while for
w > 4 Randomized is better than Deterministic in this crite-
rion (next section). (ii) For small objects with r ¼ 1; 2 under
both latency constraints, the normalized cost of all algo-
rithms increases slightly as the ratio goes up, excluding the
normalized cost of Randomized for small objects with one
replica under tight latency (see Fig. 9a). The reason behind
this slight increment is that when the ratio increases, less vol-
ume of data is read and written; hence the application has to
leverage from less difference between storage and network
services and objects are prone to stay in local DC(s). (iii) For
large objects with r ¼ 1; 2 under both latency constraints, the
normalized cost of all algorithms reduces as the ratio raises,
particularly for r ¼ 1. For example, as shown in Figs. 9b and
9d, under loose latency (resp., under tight latency), the nor-
malized cost reduces by 10, 9 and 6 percent (resp., 5, 6 and 9
percent) for Optimal, Randomized and Deterministic,
respectively when the ratio increases from 1 to 30. The main
reason for the reduction in the normalized cost for large
objects is that when large objects are write-intensive, the
objects migrate to the new DC(s) lately and utilize less the
difference between storage and network cost. In contrast,
read-intensive large objects can better leverage the difference
between storage and network cost. (iv) Under both latency
constraints, small objects with two replicas generate more
cost savings than the same objects with one replica, while the
situation is reversed for the large objects.

6.3.4 The Impact of Window Size on Cost Saving of the

Randomized Algorithm

We investigate the impact of look-ahead window size into
the available future workload on the normalized cost of the
randomized algorithm. Fig. 10 shows the evaluation of this
effect when w varies from 2 to 6 units of time. As expected,
the larger the w value, the more reduction in the normalized
cost of the algorithm for small and large objects with
r ¼ 1; 2 under tight and loose latency. As mentioned before,
for the prediction window, we set w ¼ 4 by default and
results show that Randomized outperforms Deterministic,
excluding for large objects with two replicas (see Fig. 7d).
For this setting, Fig. 10b represents the normalized cost of

Fig. 8. Normalized cost of algorithms when the latency is varied. Legend
indicates object size in KB for different algorithms. All costs are normal-
ized to the local residential algorithm.

Fig. 9. Normalized cost versus read to write ratio under tight and loose latency for objects with one and two replicas. Legend indicates object size in
KB for different algorithms. All costs are normalized to the local residential algorithm.

716 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2019



Randomized which is lower than that of Deterministic for
w > 4. This indicates that the more future workload infor-
mation is available, more improvement in the cost saving
for the algorithm happens.

6.3.5 The Effect of Objects Migration on Cost Saving

We now show how much cost can be saved by migrating
objects in the proposed algorithms over Algorithm 4 as a
benchmark. Fig. 11a shows that when the latency is tight, for
about 11 percent of small objects, there is a saving of at most
10 and 6 percent for r ¼ 1 and r ¼ 2 respectively. For large
objects, more improvements are observed in the cost savings.
In particular, the application saves 4-5 percent of the costs for
88 percent of the objects with one replica and for 98 percent
of them with two replicas. This is because that as the object
size increases, the objects are more in favor of migration due
to increasing in the imposed storage cost. Fig. 11b shows the
effect of migration on cutting the cost when the latency is
loose. For small objects, cost saving is not significant (we did
not plot here) because (i) in their early lifetime, they findDCs
that are competitive in the cost of storage and network; and
(ii) the objects do not considerably grow in size requiring to
bemigrated to newDCs in the end of their lifetime. Thus, the
object is replicated at DCs that are cost-effective in both
resources for its whole lifetime. In contrast, for 90 percent of
the large objects, the cost saving is around 4.5 and 2.5 percent
when r=1 and r=2 respectively.

7 CONCLUSIONS AND FUTURE WORK

To minimize the cost of data placement for applications
with time-varying workloads, developers must optimally
exploit the price difference between storage and network
services across multiple CSPs. To achieve this goal, we
designed algorithms with full and partial future workload
information. We first introduced an optimal offline algo-
rithm to minimize the cost of storage, Put, Get, and poten-
tial migration, while satisfying eventual consistency and
latency. Due to the high time complexity of this algorithm
coupled with possibly unavailable full knowledge of the
future workload, we proposed two online algorithms with
provable performance guarantees. One is deterministic
with the competitive ratio of 2g � 1, where g is the ratio of
residential cost in the most expensive data center to the
cheapest one either in storage or network price. The other
one is randomized with the competitive ratio of 1+g

w,
where w is the size of available look-ahead windows of the
future workload. Large scale simulations driven by a

synthetic workload based on the Facebook workload
indicate that the cost savings can be expected using the
proposed algorithms under the prevailing Amazon’s,
Microsoft’s and Google’s cloud storage services prices. As
future work, we plan to propose algorithms in which the
requested availability of objects in terms of the number of
nines is also considered [40].
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