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Abstract—Dynamic resource provisioning and the
notion of seemingly unlimited resources are attract-
ing scientific workflows rapidly into Cloud computing.
Existing works on workflow scheduling in the context
of Clouds are either on deadline or cost optimization,
ignoring the necessity for robustness. Robust schedul-
ing that handles performance variations of Cloud re-
sources and failures in the environment is essential
in the context of Clouds. In this paper, we present a
robust scheduling algorithm with resource allocation
policies that schedule workflow tasks on heterogeneous
Cloud resources while trying to minimize the total
elapsed time (makespan) and the cost. Our results show
that the proposed resource allocation policies provide
robust and fault-tolerant schedule while minimizing
makespan. The results also show that with the increase
in budget, our policies increase the robustness of the
schedule.

Index Terms—Workflows; Cloud; Robustness; Fault-
Tolerance; Scheduling;

I. Introduction
Cloud computing offers virtualized servers, which are

dynamically managed, monitored, maintained, and gov-
erned by market principles. As a subscription based com-
puting service, it provides a convenient platform for scien-
tific workflows due to features like application scalability,
heterogeneous resources, dynamic resource provisioning,
and pay-as-you-go cost model. However, Clouds are faced
with challenges like performance variations (because of
resource sharing, consolidation and migration) and fail-
ures (caused by outages and faults in computational and
network components).
The performance variation of Virtual Machines (VM) in

Clouds affects the overall execution time (i.e. makespan)
of the workflow. It also increases the difficulty to estimate
the task execution time accurately. Dejun et al. [7] show
that the behavior of multiple “identical” resources vary
in performance while serving exactly the same workload.
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A performance variation of 4% to 16% is observed when
Cloud resources share network and disk I/O [3].
Failures also affect the overall workflow execution and

increase the makespan. Failures in a workflow application
are mainly of the following types: task failures, VM fail-
ures, and workflow level failures [11]. Task failures may
occur due to dynamic execution environment configura-
tions, missing input data, or system errors. VM failures
are caused by hardware failures and load in the datacenter,
among other reasons. Workflow level failures can occur due
to server failures, Cloud outages, etc. Prominent fault-
tolerant techniques that handle such failures are retry,
alternate resource, checkpointing, and replication [22].
Workflow management systems should handle perfor-

mance variations and failures while scheduling workflows.
Workflow scheduling maps tasks to suitable resources,
whilst maintaining the task dependencies. It also satisfies
the performance criteria while being bounded by user
defined constraints. This is a well known NP-complete
problem [12].
A schedule is said to be robust if it is able to absorb

some degree of uncertainty in the task execution time [5].
Robust schedules are much needed in mission-critical and
time-critical applications. Here, meeting the deadline is
paramount and it also improves the application depend-
ability [9]. Robust and fault-tolerant workflow scheduling
algorithms identify these aspects and provide a schedule
that is insensitive to these uncertainties, by tolerating
variations and failures in the environment up to a certain
degree. Robustness of a schedule is always measured with
respect to another parameter such as makespan, schedule
length, etc. [5]. It is usually achieved with redundancy in
time or space [9] i.e. adding slack time or replication of
nodes.
In this paper, we present a robust and fault-tolerant

scheduling algorithm. The proposed algorithm is robust
against uncertainties such as performance variations and
failures in Cloud environments. This scheduling algorithm

2014 IEEE 28th International Conference on Advanced Information Networking and Applications

1550-445X/14 $31.00 © 2014 IEEE

DOI 10.1109/AINA.2014.105

858



efficiently maps tasks on heterogeneous Cloud resources
and judiciously adds slack time based on the deadline and
budget constraints to make the schedule robust. Addition-
ally, three multi-objective resource selection policies are
presented, which maximize robustness while minimizing
makespan and cost.
The key contribution of this paper is a robust

and fault-tolerant scheduling algorithm with three multi-
objective resource selection policies. This paper also
presents two robustness metrics and a detailed perfor-
mance analysis of the scheduling algorithm using them.
The outline of the paper is as follows: Section II dis-

cusses the related works in this area. Section III presents
the system model. In section IV, the proposed approach is
discussed. Section V details experimental setup with the
analysis and results. Finally in section VI conclusions and
future directions are discussed.

II. Related Work
Current workflow scheduling on Clouds mostly focuses

on homogeneous resources [16]. One of the early attempts
of exploiting the heterogeneous types of resources is pre-
sented by Abrishami et al. [2]. They do not consider
budget constraints and their scheduling algorithm does not
consider failures or performance variations.
Robust and fault-tolerant scheduling in workflows has

been an active area of research with significant amount of
work done in the area of Grids, clusters and distributed
systems. Research in robust and fault-tolerant scheduling
encompasses numerous fields like job-shop scheduling [15],
supply chain [10], and distributed systems [11], [18], [19].
Many scheduling techniques have been employed to de-
velop robust workflows. Dynamic scheduling or reactive
scheduling reschedules tasks when unexpected events oc-
cur [10]. Trust based scheduling predicts the stability of
a schedule by incorporating a trust model for resource
providers [20]. Stochastic based approaches model uncer-
tainty of system parameters in a non-deterministic way,
which aid heuristic decision making [17], [19]. Robust
schedule has also been developed using fuzzy techniques,
where task execution times are represented by fuzzy logic,
which is also used to model uncertainty [8].
Shi et al. [18] present a robust scheduling for heteroge-

neous resources using slack to schedule tasks. Task slack
time represents a time window within which the task
can be delayed without extending the makespan and it
is intuitively related to the robustness of the schedule.
They present a ε-constraint method where robustness is
an objective and deadline is a constraint. This scheduling
algorithm tries to find schedules with maximum slack time
without exceeding the specified deadline. They do not
consider a Cloud environment and also do not consider
any cost models.
To the best of our knowledge, there has been no study

in workflow scheduling algorithm for Clouds maximizing
robustness, and minimizing makespan and cost at the

same time. Also there are very few works which schedule
workflow tasks on heterogeneous Cloud resources. This
study tries to address these shortcomings.

III. System Model
The description of the system model, important defi-

nitions, assumptions, and the problem statement are dis-
cussed further in this section.
The Cloud environment in our system model

has a single datacenter that provides heterogeneous
VM/resource types, V T = {vt1, vt2, ..., vtm}. Each VM
type has a specific configuration and a price associated
with it. The configuration of VM type differs with respect
to memory, CPU measured in million instructions per sec-
ond (MIPS) and OS. Each vti has a Price(vti) associated
with it, charged on an unit time basis (e.g. 1 hour, 10
minutes, etc.). A static VM startup/boot time is assigned
to all VMs, which influences the start time of the task.

Uncertainties: We have considered two kinds of un-
certainties, task failures and performance variations of
VMs. Performance variations in the system arise due
to factors like the datacenter load, network delays, VM
consolidation, etc. Due to the performance variation of a
VM, the execution time of a task increases or decreases
by a value y. Here, y is a random variable with a certain
probability distribution with a mean value of zero. The
actual execution time (AET) of a task is calculated as
AET (tj) = ej(1 + y), where ej is the expected execution
time of task tj .
A Workflow can be represented as a Directed Acyclic

Graph (DAG), G = (T, E), where T is a set of nodes,
T = {t1, t2, ..., tn}, and each node represents a task. Here,
E represents a set of edges between tasks, which can
be control and/or data dependencies. Each workflow is
bounded by a user defined deadline D and budget B
constraints. Additionally, each workflow task tj has a task
length lenj given in Million Instructions. We assume all
tasks to be CPU intensive and model task execution time
accordingly. Models for data or I/O intensive tasks can
also be incorporated to estimate task execution without
affecting the scheduling algorithm. Task length and the
MIPS value of the VM are used to estimate the exe-
cution time on a particular VM type. We also account
for data transfer times between tasks. The data transfer
time between two tasks is calculated based on the size
of the data transferred and the Cloud datacenter internal
network bandwidth.

Makespan, M , is the total elapsed time required to
execute the entire workflow. The deadline D is considered
as a constraint where the Makespan M should not be
more than the deadline (M � D). The makespan of the
workflow is computed as following:

M = finishtn
− ST, (1)

where ST is the submission time of the workflow and
finishtn

is the finish time of the exit node.
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Total Cost, C, is the total cost of the workflow execu-
tion, which is the sum of the price for the VMs used to
execute the workflow. Each VM type has a price associated
with it, depending on its characteristics and type. The
price of each VM is calculated based on its type and
the duration of time it was provisioned. The duration of
the time is calculated based on the number of hours a
VM executes, from the time of its instantiation, until it
is terminated or stopped. The time duration is always
rounded to the next full hour (e.g. 5.1 hours is rounded to
6 hours). It is important to mention that multiple tasks
can execute in a VM depending on the schedule. Moreover,
to execute the entire workflow, multiple VMs of different
types can be used. Therefore, the total execution cost, C,
is the sum price of all the VMs of different types used in
the workflow execution. Additionally, there is a budget B
as a constraint, such that the total cost should be less than
the budget (C � B).

Robustness of a schedule is measured using two met-
rics. The first metric is robustness probability, Rp, which
is the likelihood of the workflow to finish before the given
deadline [18], which can be formulated as below:

Rp = (TotalRun − FailedRun)/(TotalRun), (2)

where TotalRun is number of times the experiment was
conducted and FailedRun is number of times the con-
straint, finishtn

� D was violated. This equation is based
on the methodology offered by Dastjerdi et al. [6].
The second metric is the tolerance time, Rt, which is

the amount of time a workflow can be delayed without
violating the deadline constraint. This provides an intu-
itive measurement of robustness, expressing the amount
of uncertainties it can further withstand.

Rt = D − finishtn
. (3)

Assumptions: Data transfer cost between VMs are
considered to be zero, as in many real Clouds, data
transfer inside a Cloud datacenter is free. Storage cost
associated with the workflow tasks is assumed to be free,
since storage costs have no effect on our algorithm. The
datacenter is assumed to have sufficient resources, avoiding
VM rejections due to resource contention. This is not a
prohibitive assumption as the resources required are much
smaller than the datacenter capacity.

Problem Statement: The problem we address in this
work is to find a mapping of workflow tasks onto hetero-
geneous VM types, such that the schedule is robust to
the uncertainties in the system keeping the makespan and
cost minimal, while executing within the given deadline
and budget constraints.

IV. Proposed Approach
In this section, our algorithm and policies are presented.

Before presenting the algorithm, some important defini-
tions are detailed. The critical path of a workflow is the
execution path between the entry and the exit nodes of the

Algorithm 1: FindPCP(t)
//Determine the PCP and allocate a VM for it.
input : task t

while t has unassigned parent do
PCP ← null, tj ← t
while there exists an unassigned parent of tj do

add critical parent tp of tj to PCP
tj ← tp

call AllocateResource(PCP )
for tj ∈ PCP do

marks tj as assigned
call FindPCP(tj)

workflow with the longest execution time [1]. Critical path
determines the execution time of the workflow. The critical
parent (CP) of tj is the parent tp, whose sum of start time,
data transfer time and execution time is maximum among
other parent nodes.
The partial critical path (PCP) of node tj is a group

of tasks that share a high dependency between them.
PCP is determined by identifying the unassigned parents.
Unassigned parent is a node that is not scheduled or
assigned to any PCP. Further, PCP is created by finding
the unassigned critical parent of the node and repeating
the same for the critical parent recursively until there are
no further unassigned parents. Algorithm 1 details the
procedure to find the PCP of a node. Partial critical paths
can be scheduled on a single resource, optimizing time
and cost [1]. This algorithm decomposes the workflow into
smaller groups of tasks, which helps in scheduling. PCPs
of a workflow are mutually exclusive, i.e., each task can be
in only one PCP.
For every PCP, the best suitable VM type with a ro-

bustness type is selected. The robustness type defines the
amount of slack that will be added to the PCP execution
time. It dictates the amount of fluctuation in the execution
time a PCP can tolerate. Four types of robustness that can
be associated with a PCP are defined: 1) No robustness:
this robustness type does not add any slack time to the
execution time of a PCP. 2) Slack : this robustness type
adds a predefined limit of time for the PCP execution time
i.e. it can tolerate fluctuations in execution time up to
a defined limit. 3) One Node Failure: in this robustness
type, the largest execution time among the PCP nodes is
added to the PCP execution time. This robustness type
provides sufficient slack time to handle the failure of the
task with the largest execution time in the PCP. 4) Two
Node Failure: here, the execution time of the largest two
nodes is added to the PCP execution time; this is done
only when the PCP consists of at least three nodes. PCP
with this robustness type can tolerate up to two task
failures. Four robustness types up to two node failures are
proposed. However, robustness types with higher number
of node failures can also be developed.
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Algorithm 2 details the selection of a VM type and its
associated robustness type. An exhaustive solution set,
SS = {s1, s2, ..., sm∗l} is generated, where m is the number
of VM types and l is the number of robustness types. The
solution set SS consists of solutions with every possible
robustness type for every VM type defined. Each solution,
si = {vti, RTi, PCPci, PCPti}, consists of a robustness
type (RTi), PCP cost (PCPci) and PCP execution time
(PCPti) for VM type vti. As m and l are generally not
large, the time and space required are reasonable.
The solution set SS is reduced based on deadline and

budget constraints into a smaller set of feasible solutions.
The deadline constraint D is evaluated by adding the PCP
execution time of the chosen instance and robustness type
with top level and bottom level.

TopLevel + PCPt + BottomLevel � D, (4)

where TopLevel of PCP is the sum of execution times of
nodes on the longest path from the entry node to the first
node of PCP. BottomLevel of PCP is the sum of execution
times of nodes on the longest path from the end node of
the PCP to the exit node.
Budget Constraint is evaluated by the following equa-

tion:
PCPc � PCPb, (5)

where PCPc is the total cost of the PCP. PCP Budget,
PCPb, is the amount that can be spent on the PCP; this
is decomposed from the overall budget according to the
following equation,

PCPb = (PCPt/TT ) ∗ B, (6)

where, TT is the total time of the workflow, which is
calculated by adding the execution times of the tasks on
the reference VM type, vtref . VM with the least MIPS
value is considered as the reference type, vtref . PCPt is
the total execution time of the PCP on vtref . When PCPb
is less than LPr, which is the price required to execute on
the cheapest resource, then PCPb is assigned the value
LPr.
A feasible solution set FS is created using these two

constraints as outlined in Algorithm 2.
findBestSolution, method described in Algorithm 2,

chooses the appropriate VM type vti for a PCP, based
on the resource selection policy from the feasible solution
set FS. The three resource selection policies used by this
method are described in the following section.

A. Proposed Policies
In this section, three resource selection policies are

explained. These policies select the best solution from the
feasible solution set FS for each PCP. Each of them has
three objectives, namely robustness, time and cost and the
priorities among these objectives change for each of these
policies. The description of the policies is given below.

Algorithm 2: AllocateResource(PCP)
//Allocate a suitable robust resource to the PCP
input : PCP
output: Robust Resource for PCP
//Create Solution Set SS;
for Every Instance type do

for Every Robustness type do
Create Solution set with PCPt and PCPc

FS = null;
Calculate PCPb according to equation 6;
//Create a Feasible Solution Set FS;
for Every solution in SS do

time = PCPt + TopLevel + BottomLevel;
if time <= D and PCPc <= PCPb then

Add to FS

//finds the best solution according to the chosen policy
RobustResource = findBestSolution(FS, Policy);
Assign every task in PCP to the RobustResource.

1 Robustness-Cost-Time (RCT): The objective of
this policy is to maximize robustness and minimize
cost and makespan. This policy sorts the feasible
solution set based on the robustness type, and among
the solutions with the same robustness type, they
are sorted in the increasing order of cost. Solutions
with the same robustness type and cost are sorted
with increasing order of time. The best solution from
this sorted list is picked and the VM type with the
associated robustness type is mapped to the tasks of
the PCP. Solutions chosen by this policy have high
robustness with a lower cost.

2 Robustness-Time-Cost (RTC): RTC policy is
similar to RCT policy described above with different
priorities. This policy gives priority to robustness,
followed by time and finally cost. This policy selects
a solution that is robust with minimal makespan.
Choices of RTC and RCT policies might have the
same robustness type, but will vary with respect to
the VM type they select. RTC policy selects a solution
with high robustness with minimal makespan.

3 Weighted: With this policy users can define their
own objective function using the three parameters
(robustness, time and cost) and assign weights for
each of them. Each value is normalized by taking the
minimum and maximum values for that parameter.
The weights are applied to the normalized values of
robustness, time and cost, and based on these weights
the best solution is selected. Weighted policy is a
generalized policy, which can be used to find solutions
according to user preferences.

Our algorithm with the chosen policy finds a suitable
VM type associated with a robustness type for every PCP.
Further, the algorithm allocates the PCP tasks on a VM of
the chosen type. The resource allocator, first attempts to
find a VM of the specified type among the running VMs.
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If such a VM is found, the algorithm checks if its end time
is less than the start time of the PCP. If this condition
is satisfied, the algorithm allocates PCP tasks on this
existing VM; otherwise a new VM is created to allocate
the tasks. This reduces the number of VMs instantiated
and also minimizes the makespan as new VMs take time
to boot, which delays the schedule.

B. Fault-Tolerant Strategy
Checkpointing is employed in our algorithm as a fault-

tolerant strategy. When a task fails, the algorithm resumes
the task from the last checkpoint and checkpointing of
tasks is done at regular intervals. The robustness type
selected by the resource selection policy provides the nec-
essary slack for the failed task. Additionally, checkpointing
strategy helps to recover the task from the last checkpoint.

C. Time Complexity
Creating a solution set SS depends on the number of

robustness types and VM types. The time complexity for
creating such a set is O(m.l), where m is the number of
VM types and l is the number of robustness types. The
time complexity for sorting and choosing the best solution
based on the policy is O(mlogm). The parameters m and l
can take a maximum value of n, where n is the number of
tasks. Therefore, the time complexity of AllocateResource
is O(n2). The time complexity of FindPCP is O(n) as the
maximum number of times this method can be recursively
invoked is equal to the number of tasks n. Hence, the
overall time complexity of our algorithm is O(n2).

V. Performance Evaluation
A. Simulation Setup
CloudSim [4] was used to simulate the Cloud environ-

ment. It was extended to support workflow applications,
making it easy to define, deploy and schedule workflows.
A failure event generator was also integrated into the
CloudSim, which generates failures from an input failure
trace. Five types of workflow applications and two failure
models are used in our simulation as described below.

1) Application Modeling: Five workflows (Montage, Cy-
berShake, Epigenomics, LIGO and SIPHT) were con-
sidered. Their characteristics are explained in detail by
Bharathi et al. [13]. These five workflows cover all the basic
components such as, pipeline, data aggregration, data
distribution and data redistribution. Three different sizes
of these workflows are chosen, small (around 30 tasks),
medium (around 100 tasks) and large (1000 tasks).

2) Resource Modeling: A Cloud model with a single
datacenter offering 10 different types of VMs is considered.
The characteristics of VMs are modeled similar to the
Amazon EC2 instances (t1.micro, m1.small, m1.medium,
m1.large, m1.xlarge, m2.xlarge, m2.2xlarge, m2.4xlarge,
c1.medium, c1.xlarge). A charging period of 60 minutes is
considered for these VMs, similar to the most prominent
Cloud providers.

3) Failure Modeling: Two types of failure models are
considered for our experiments. First, failures are simu-
lated from failure traces (FT). Due to lack of publicly
available Cloud specific failure traces, Condor (CAE) Grid
failure dataset [21], available as a part of Failure Trace
Archive [14] was chosen. Secondly, a failure model with
10% failure probability (FP) is considered, i.e., for each
node there is 10% probability of failure based on uniform
distribution. The failed nodes may fail again with the same
probability until they complete their execution.
Each VM undergoes a performance variation, which af-

fects the task execution time. We model the variance in the
task execution time as a normal distribution y = N(0, σ2),
where the standard deviation σ is 10% of the execution
time of the task, as suggested by Dejun et al. [7]. They
have analyzed and presented the performance variations
of Amazon EC2 instances in their study.

4) Reference Algorithms: Two reference algorithms to
compare our resource allocation policies are implemented.
The first algorithm is a deadline constrained algorithm
proposed by Abrishami et al. [2]. The IaaS Cloud Partial
Critical Path (ICPCP) algorithm, similar to our algo-
rithm, divides the workflow tasks into PCPs. ICPCP is
non-robust algorithm bounded by a deadline constraint.
The second reference algorithm implemented is a ro-

bust bi-objective genetic algorithm (GA) [18]. This GA
considers heterogeneous resources with the objective of
maximizing the robustness by increasing the slack time
between the tasks. This algorithm considers deadline as a
threshold and verifies that the schedule does not violate
the deadline. The fitness function, selection and mutation
operators for the GA are implemented as described in [18].
The parameters of GA are set as follows: population
size = 2000, cross over probability = 0.9 and mutation
probability = 0.1, as defined by the authors. Maximum
number of iterations is set to 800.
These algorithms are chosen for their similarity with our

approach. ICPCP schedules tasks by grouping them into
PCPs, similar to our algorithm and GA tries to maximize
the slack time to be robust, which is the approach we adapt
as well.
In this paper, we have executed the experiments for

five workflow applications with two failure models. For
each workflow, we varied the deadline with a fixed budget
and also varied the budget keeping the deadline fixed
to measure the performance with regards to robustness,
makespan and cost. Each experiment was executed for 10
times, the mean of which is reported. For the weighted
policy, the weights considered for robustness, time and cost
are 0.5, 0.3 and 0.2 respectively. We intend to study the
effect of varying weights in future. We present our analysis
and results in the following section.

B. Analysis and Results
In this section, among the five workflows considered, we

discuss the results of only CyberShake and LIGO work-
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(a) Cybershake with fixed Budget and with FP failure model
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(b) LIGO with fixed Deadline and with FT failure model
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Fig. 1. Effect on robustness with tolerance time Rt
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(a) Cybershake with fixed Budget and with FP failure model
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(b) LIGO with fixed Deadline and with FT failure model
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Fig. 2. Effect on makespan for large sized CyberShake and LIGO workflow
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(a) Cybershake with fixed Budget and FP failure model
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(b) LIGO with fixed Deadline and with a FT failure model
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Fig. 3. Effect on cost for large sized CyberShake and LIGO workflow

flows due to space restrictions. The CyberShake workflow
uses the Probabilistic Seismic Hazard Analysis (PSHA)
technique to characterize earth-quake hazards in a region
and the LIGO Workflow detects gravitational waves of
cosmic origin by observing stars and black holes [13]. We
present two experiments considering large workflow types.
In the first experiment, we vary the deadline with a fixed
surplus budget for large CyberShake workflow and the
failures are generated using the failure probability model
(FP), with a 10% probability. In the second experiment,
we vary the budget with a fixed strict deadline for large

LIGO workflow and the failures are generated through
the failure trace model (FT). Both these experiments are
carefully devised to cover all combinations of deadline and
budget, showing the performance of the algorithms under
all conditions. For these experiments, we find the lowest
makespan Mlow, which is the time taken to execute on the
most expensive VM. We also find the lowest cost Clow,
which is the cost needed to execute on the cheapest VM.
We introduce a deadline factor α similar to [2], based on
which we vary the deadlines for workflows according to
α.Mlow. We vary α from 1 to 4.5 with a step length of 0.5.
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TABLE I
Robustness Probability Rp of large montage workflow

with failure probability model (FP) for different policies.

Deadline Budget ICPCP GA RCT WGHT* RTC

Strict
Strict 0.00 0.10 0.20 0.40 0.70
Normal 0.00 0.10 0.20 0.70 0.90
Relaxed 0.00 0.00 0.20 0.70 0.90

Relaxed
Strict 1.00 0.90 1.00 1.00 1.00
Normal 1.00 0.90 1.00 1.00 1.00
Relaxed 1.00 0.80 1.00 1.00 1.00

* WGHT is an abbreviation for the weighted policy.

Similarly we introduce a budget factor β and the budget is
varied according to β.Clow. We vary β from 1 to 4.5 with
a step length of 0.5.
The analysis of these experiments and its effect on

robustness, makespan and cost are presented below.
1) Effect on robustness: Figure 1 presents the tolerance

time Rt of Cybershake and LIGO workflows. Positive
values of Rt represent robust solutions that have finished
execution within the deadline even with failures and per-
formance variations. Negative values represent schedules
that have violated the deadline constraint. In Figure 1,
we observe that the RTC policy has the highest mean
tolerance time, conveying that the policy is not just robust
but can withstand more failures. RTC policy outperforms
other policies emerging as the most robust policy. We
observe that robustness increases as deadline or budget
increases. We observe in Figure 1(b) that tolerance time
Rt of ICPCP and GA do not vary with increase in budget.
This is because these algorithms do not take budget as an
input and do not show any effect as the budget varies.
In 97.5% of the cases weighted policy outperforms

ICPCP for CyberShake workflow as seen in Figure 1(a).
Under strict deadline, weighted and RCT policies perform
better than GA in 67.5% of the cases. Under relaxed
deadline GA has a higher tolerance time than weighted
and RCT policy in 72.5% of the cases, but the cost
of execution for GA is 2.6 times higher than RCT and
weighted policies. RCT and weighted policies tries to
achieve a robust solution with minimal cost, even under
a relaxed deadline we have a robust solution with costs
much lower than GA.
In the LIGO workflow experiment, we see that our poli-

cies have higher tolerance time in comparison to ICPCP
and GA algorithm as shown 1(b). We can also observe that
the mean tolerance time increases with increase in budget
for our policies unlike ICPCP and GA.
Table I presents the robustness probability Rp for the

large Montage workflow with varying deadline and budget.
This experiment was performed for all workflows. For
space considerations we report only the large Montage
workflow as it is the most complex and failures in its
task nodes have high adverse effect on the makespan and
cost. Other workflows show similar trends and have better
results for our policies. This table provides a measure of
robustness probability, Rp, which is the probability of a

schedule being within the deadline. It can be seen that
the RTC is the most robust policy and has the highest
probability of being within the deadline. The robustness
probability, Rp for weighted and RCT policies outperform
GA and ICPCP. It can also be observed that our policies
perform with high levels of robustness even under strict
deadlines and budgets.

2) Effect on makespan: Figure 2 shows the effect on
makespan for CyberShake and LIGO workflows. Figures 2
and 3 have graphs with two panels, where the actual panel
represents schedules after execution with uncertainties
and the estimated panel depicts schedules before execu-
tion without failures. Figures 2(a) and 2(b) show that
makespan increases as deadline increases and makespan
decreases as budget increases. Our policies have a higher
makespan when the schedule is estimated in comparison
to ICPCP or GA; however the actual makespan after
failures and performance variations of resources is minimal
for our policies. RTC provides schedules with smallest
makespan under the scenarios of failures and performance
variations because it chooses robust resources with least
execution time. The average makespan of weighted policy
is 19% lower than ICPCP for both CyberShake and LIGO
workflows. The average makespan of RCT policy is 14%
and 11% lower than ICPCP for CyberShake and LIGO
workflows respectively.
In Figure 2(b), the estimated panel of the graph

shows the working of the RTC policy. As the budget
increases, the makespan increases steadily and then de-
creases steadily as shown. This is because as the budget
increases, the algorithm has the flexibility to either add
more slack time or choose an expensive VM. Therefore,
with smaller increase in budget, the algorithm chooses in-
expensive VMs and adds slack time based on the increases
in budget, which increases the estimated makespan. With
sufficient increase in budget, the algorithm chooses ex-
pensive VM resulting in the decrease of the estimated
makespan. The actual panel of the graphs shows that the
makespan of our policies are much lower than ICPCP
and GA. The RTC policy gives lower makespan consis-
tently, while the makespan of RCT and weighted policies
increases slightly with increase in deadline and decreases
with increase in budget.

3) Effect on cost: Figure 3 presents the effects on cost,
Figure 3(a) shows that the cost decreases for RCT and
weighted policies, as the deadline increases with a fixed
budget and Figure 3(b) shows that cost increases for our
policies as budget increases with a fixed deadline.
For CyberShake workflow, we observe that our policies

RCT and weighted have lower costs in comparison with
ICPCP and GA. RTC policy has a 98% higher cost than
ICPCP and 12% lower cost than GA, but has a 39.7% and
33.6% lower makespan than ICPCP and GA respectively.
RTC policy chooses resources that are robust with a lower
makespan; on the other hand RCT policy chooses a robust
schedule with lower costs.
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For LIGO workflow, as depicted in Figure 3(b) we see
increase in costs for our policies as the budget increases,
but we can also observe that the robustness increases and
makespan decreases with increasing budget as shown in
Figure 1(b) and 2(b). We can see that the costs of our
policies are much lower than GA in most of the cases.
Experiments show that our policies consistently offer

schedules with high robustness. RTC policy gives robust
schedules with increase in costs but minimal makespan,
and RCT policy provides robust schedules, which mini-
mizes costs under relaxed deadline or increases costs under
surplus budget. Under strict deadline or a stringent budget
our policies behave comparable to ICPCP with respect to
cost, yet provides a robust schedule with lower makespan.
Our weighted policy in this experiment is tested with only
one set of weights, which are comparable to our RCT
policy and hence the results show similar trends. The users
can use this policy according to their priorities and get
schedules that are aligned to their priorities.

VI. Conclusions and Future Work

This paper presents three resource allocation policies
with robustness, makespan and cost as its objectives. This
is one of the early works in robust and fault-tolerant work-
flow scheduling on Clouds, considering deadline and bud-
get constraints. The resource allocation policies judiciously
add slack time to make the schedule robust considering
the deadline and budget constraints. We test our policies
with two failure models for five scientific workflows with
two metrics for robustness. Results indicated that our
policies are robust against uncertainties like task failures
and performance variations of VMs.
Among the proposed policies presented, the RTC pol-

icy shows the highest robustness and at the same time
minimizes makespan of the workflow. The RCT policy
provides a robust schedule with costs marginally higher
than the reference algorithms considered. The weights of
the weighted policy can be varied according to the user
priorities. Overall, our policies provide robust schedules
with a minimal makespan. They also show that with
increase in budget, our policies increase the robustness of
the schedule with reasonable increase in cost.
Experiments were conducted with a failure probability

of 10%; we plan to experiment with varying failure prob-
abilities. In future, we like to experiment our system on
various cost models (e.g. spot market) offered by the Cloud
and their impact on the robustness of workflows.
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