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Abstract—With the major development of sensor technolo-
gies and advancements of communication network infrastruc-
tures, there is a growing interest to add more intelligence in
the e-health monitoring for facilitating an effective healthcare
system. While IoT devices are capable of continuous health-
parameter sensing and providing notifications to the user,
an effective business process management (BPM) facilitates
effective system integration and data processing workflow. This
paper proposes an efficient framework for managing emer-
gency situations (specifically, health-related) through the anal-
ysis of heterogeneous data sources. The proposed framework,
named CLAWER (CLoud-Fog bAsed Workflow for Emergency
seRvice) aims to bridge the gap between process management
and data analytics by providing an automated workflow for
personalized health-monitoring and efficient recommendation
system. Here, the IoT devices are used for collecting the
movement and health data. The smart phone can act as an edge
device to acquire data with user movement information. The
accumulated data is initially processed inside the fog device,
and finally the analysis and recommendations are generated by
the cloud. In this paper the indoor health-status of the users are
analysed in small cell cloud enhanced eNode B, which is used as
fog device. The generated recommendations are stored in the
fog device to provide the recommendations to the users with
low latency and in timely manner. The experimental analysis
of CLAWER yields better precision and recall values than the
existing methods.

Keywords-Cloud Computing; Context-aware, Workflow, Mo-
bility, Health management.

I. INTRODUCTION

The pervasive use of GPS-equipped smart-devices, im-

proved sensor and internet technologies have accelerated

dramatic revolution in individuals daily living. In the era

of Internet of Things (IoT), smart communication among

objects such as vehicles, device, buildings and people,

has facilitated intelligent human living environment. Smart

transportation or mobility services, smart-home, personal-

ized recommendation system, efficient health-monitoring are

only a few use-cases of this burgeoning technology. In

addition, cloud, fog, edge based [1] infrastructures enhance

the functionality of such IoT applications in terms of reduced

energy consumption and delay.

The emerging cloud/fog/edge/IoT paradigms have become

a key enabler of effective business processes including better

resource planning and management, customer satisfaction

by providing on-time services. For instance, if the BAN

(Body area network) can sense abnormal health-condition

of an user, it can trigger alert and may help in taking early

preventive measures. Further, other disasters/ emergency

situations such as fire, traffic blockage, flight cancellations

can be managed efficiently. In brevity, IoT devices facilitate

continuous monitoring of events through devices (smart-

phones, wearable devices, sensors), and cloud/fog/edge/IoT

devices provide the computational and storage infrastruc-

tures to provision on-demand services. This technology has

the potential to change the current business trends, and

enterprises are increasingly adapting IoT-based framework

in their business workflow. On the other hand, another

key challenging aspect is orchestration and manageability

of disparate heterogeneous systems, or agencies to work

together. For example, while providing support to an ailing
person, the ambulance service, healthcare centers and city-

traffic need to seamlessly interact to provide an efficient

health care service. In such scenarios, the real-time data

needs to be analyzed and several business agencies need

to cooperate for efficient service and cost-savings.

The IoT healthcare market is growing rapidly for rising

demands of improved healthcare with reduced cost/delay,

and reliable connectivity. In this paper, we propose an end-

to-end workflow management framework, named CLAWER,

to provide delay-aware effective personalized health-care

services to user. The key contributions of this paper are

summarized as follows:

1) A cloud-fog-edge-IoT based context aware framework

namely CLAWER is proposed to provision personal-

ized e-health monitoring and healthcare service to user

in minimum delay. The hierarchical framework has

cloud servers, fog, edge and IoT devices in several

layers and it analyzes the sensing data and takes

preventive measures in case of emergency. The frame-

work has been implemented and tested over real-life
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Figure 1: Workflow of CLAWER

data samples and promising results have been found.

2) An automated workflow is presented in CLAWER

framework, when different modules of it works to-

gether and adaptive measure is taken based on the

data analysis and contexts. The automated workflow

is useful in taking decisions when emergency situation

arises.

3) CLAWER presents a markov-chain based path-

prediction model for extracting optimal path. Further,

the prediction algorithm is computed on MapReduce

paradigm for faster response. This mobility analytics

is beneficial when the user has some serious health

problem and needs to travel to the health-care center

in minimum delay.

In this direction, CLAWER is an well-designed, integrated

framework which facilitates effective health-monitoring and

decision making in case of emergency situations. The rest

of the paper is organized as follows. Section II discusses the

related works. CLAWER framework is presented in section

III and experimental evaluation is discussed in section IV.

Finally, the paper is concluded in section V.

II. RELATED WORK

With this advancement and growth in wireless sensor

network, Internet of Things (IoT) has been introduced [2].

In IoT the sensors and actuators collect the status of the

environmental objects of the surrounding and the processing

takes place usually inside the cloud. However, the data

storage and processing in the cloud suffers from delay

and energy consumption, which has been dealt with using

edge and fog computing [3], [4]. The integration of IoT

with fifth generation network has been discussed in [5]. E-

health monitoring has also become an emerging area of

interest in IoT. Various applications such as Samsung S

Health, Apple Healthkit, Google Fit, and Microsoft Health

are available today. In Internet of Health Things (IoHT),

exchange and processing of the data is performed to monitor

health condition of individuals by integrating sensor or

IoT devices with advanced mobile technologies. Existing e-

health applications use cloud servers for processing of the

health data. However, cloud only framework may affect the

quality of service in terms of delay and power consumption

[6], [7], which has been overcome through the use of fog

computing [8], [9].

The context-aware health care system for smart cities

has been proposed in [10]. For personalized mobile health

care, an IoT based interconnection framework has been

designed in [11] for continuous and remote monitoring of

vital signs. In the context of business process management

(BPM), Xiong et al. [12] presents a framework named

SmartCrowd to deliver crowd-sourcing tasks by proposing

a novel workflow model. Another work [13] presents an

efficient algorithm for for regenerating BPM in multi-cloud

environment for cost reduction.
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Figure 2: CLAWER: Hierarchical Placements of IoT/ Edge/ Fog/ Cloud

Nevertheless, CLAWER is the first work to integrate

several business partners/ agents (such as hospital, car, IoT

devices, cloud data-centers) and analyse location, contex-

tual information, and health information for recommending

users’ health status and subsequently taking preventive mea-

sures. To the best of our knowledge, no other existing works

have considered such workflow-oriented data analysis for

building an efficient health monitoring system.

III. CLAWER: ALGORITHMS AND IMPLEMENTATIONS

In this section, we describe the proposed framework

named CLAWER that is capable to model and analyse health

profiles of individuals and recommend medical assistance

periodically. Figure 1 illustrates the overall workflow of

the health monitoring and recommendation system. Fig-

ure 2 represents the hierarchical placement of cloud/ fog/

edge/ IoT devices in both indoor and outdoor regions. As

depicted in the figures, the proposed system architecture

consists of users with wearable devices, handheld devices,

SCceNB (small cell cloud enhanced eNodeB), RSUs (Road

Side Unit) and cloud servers. The handheld and wearable

devices are equipped with various sensors and applications

helping in health-related and movement data capturing. The

handheld devices are connected with the network through

SCceNB in indoors. Here, these handheld devices are edge

devices, which process data locally. Similarly, when the

user is in move, the vehicle (such as ambulance) act as

an edge node. These edge devices are connected to fog

nodes: RSU (outdoor) and SCceNB (indoor). The fog nodes

helps in computing, storing and communicating between

edge devices and cloud servers. The cloud storage and

computing capacity are utilized to analyse the accumulated

huge movement and health information. Besides, the system

is also capable to detect abnormal health condition, and

notifies to the caregivers accordingly.

In case abnormal health condition is detected or emer-

gency situation occurred, the user needs to reach to the

nearby healthcare center in minimum delay to avoid any

fatal condition. Along with the ambulance service, another

fundamental aspect is to find out the optimal path (less

congestion) to traverse the distance in minimal time. This

section presents the methods and their implementations to

extract the path.

A. Health status monitoring

Body area network (BAN) is used to capture the health

data of a user, such as blood pressure, body temperature,

heart rate etc. The collected health data are sent to the

smart phone of the user. The geo-location information of

the user, health data and contextual data are accumulated

inside the smart phone of the user, which forwards it to

the fog device under which the user is registered. The fog

device performs preliminary processing on the data before

forwarding to the cloud. In case of health data analysis, a

functional model is generated to verify whether the user’s

health status is normal or not. In the functional model, the

user’s geo-location information, contextual information such

as humidity, light intensity, temperature of the environment

and health data are provided as input. Based on the health

and context information, if any abnormality is detected, then

the user is notified through an alert. Let the collected health

data set is datah, context data set is dataa and geo-location

information is datag , then the predicted health status (Sh)
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will be given as,

Sh = f(datah, dataa, datag) (1)

where f(datah, dataa, datag) is the function to be per-

formed on the health data set (datah), context data set

(dataa) and geolocation information (datag). In this func-

tional model, each of the collected health parameter value

is compared with respect to its normal range based on

the context data and geolocation information. If the health

parameter value falls outside the normal range based on

the context data set and geolocation information, then the

predicted output is “health status is abnormal based on

parameters”. In that case an alert message is sent to the

user along with the information of nearby health centre.

B. Probabilistic modeling of road networks and traffic in-
formation

A road network can be easily modeled as a Markov chain,

where each state of the Markov chain corresponds to junc-

tions (nodes) and a transition edge corresponds to connecting

roads (edges) between a pair of junctions. This interpretation

of the road networks is defined as primal [14]. On the other

hand if we reverse the role of streets and junctions then that

representation is the dual representation (streets are states

and junctions are transition edges). CLAWER proposes a

data-driven Markov model considering quantitative variables

which helps in defining the dynamic nature of road traffic.

To handle the dynamic nature of the road network, we de-

compose the network to avoid the redundant computations.

For example, if one of the lane of Kolkata region is blocked

due to construction, it will not affect the transportation of

Delhi region at any cost. But, blockage of National Highway

will surely affect the transport network of Delhi. Hence,

hierarchical decomposition or partition of road network

based on spatial distribution and connection between two

spatially distributed nodes is another important task. We

propose to maintain a log of any change occur in road

network - like blockage of the road or any inclusion of road,

change in parameters. We also maintain a cache to store few

computed routes to avoid the duplicate computation. Let us

say, cache is updated in time ti and road structure change is

detected or communicated at time tj . If tj < ti, then updated

information need to be reflected in the system, otherwise we

ignore the change.

To predict the less congested path, we utilize Markov

chain based approach. The probability of the variable is

represented as:

P (Xk+1 = Sk+1|Xk = Sk,Xk−1 = Sk−1, ...X0 = S0)

= P (Xk+1 = Sk+1|Xk = Sk)
(2)

N∑
j=1

Pi,j = 1, ∀i = 1, 2, ..., N (3)

Markov chains are generally expressed by transition proba-

bility matrices. So if a system has N states, the transition

probability matrix P will be an NxN matrix with entries

Pi,j , where Pi,j is the probability of making a transition

from state Si to state Sj and the sum of all entries of every

row in P sum to 1 as shown in Equation 3.

The transition probability matrix P corresponds to a

digraph, where the nodes of the graph are represented by

the states of the Markov Chain, and for every Pi,j �= 0 there

is an edge between states Si and Sj .

C. Construction of Markov chain of road network

We have shown the procedure to construct the transition

matrix of Markov chain for a road network in this section. In

order to thoroughly assess the performance of the proposed

approach, we have considered a simple road network as a

benchmark as shown in Fig. 3. However, since the method

is scalable, it can be applied to any real world road network

of any size. The network shown in Fig. 3 is of two towns

that are separated by a river and connected by bridges.

Transforming a road network to Markov chain is done by

converting the primal to dual. As defined earlier in a dual

network the nodes correspond to city roads and edges are

junction points. Fig. 4 shows the dual network where each

node is labeled as XY which implies that junctions X and Y

connected by road XY(X and Y being nodes in the primal).

We perform this transformation of primal to dual network

because more information is captured by the dual version.

Apart from traffic flow, we need to consider travel times

between different junctions. We construct the Markov chain

of the dual network, where each node of the dual network

corresponds to a state and each edge corresponds to a

transition edge in the Markov chain. The time to cover

individual roads varies according to the length and width

of the road, limitation of speed, road surface condition,

time of the day and other dynamic factors. The average

travel time between junction points depends not only on the

length of the roads but also on other traffic conditions. The

cloud server can compute the average travel time between

two junctions by mining historical mobility data. After

computing the normalized average travel time across all

roads, the probability associated with every self loop is given

by

Pii =
(atti-1)
atti

, i = 1, 2, ..., n (4)

where atti = average travel time of the ith road, estimated

from the collected data as discussed in the later section.

Pij = (1-Pii).rij , i �= j (5)

where rij = turning probability from road i to j.

It may be noted that we have modeled the road network

in this way because the underlying Markov model captures

useful information about the real world phenomena and it is

more simpler representation for performing analysis.
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Figure 4: Sample dual graph of the road network

D. Predicting optimal path

It may be noted that the shortest path may not be the

optimal path to reach the destination due to usual high

traffic congestion or any other events such as traffic blockage

or accidents. While Dijkstra algorithm is the traditional

shortest path algorithm, for goal-directed path prediction,

we have used a variant of A∗ Algorithm. The cost function

cost(ni, nj) is represented by:

cost(ni, nj) = a(ni → nj) + b(Ri,j , c) (6)

where cost(ni, nj) is the cost required to traverse from ni

node to nj node on the road network (R). The components

of the cost function are a(ni → nj) and b(Ri,j , c). The first

component (a(ni → nj)) is computed from the connecting

edges of the road network, i.e, length of edge, average time

required to traverse. The next component consists of the

subgraph (Ri,j) of the road network consisting the start

(ni) and destination node (nj) and context parameter (c).
CLAWER considers travel patterns (p1) of the subgraph and

real-time traffic events (p2) as context while computing the

cost function. For instance, the road-segments connecting

residential regions and commercial regions usually have high

traffic congestion (p1) in particular time-slots (0830-0930).

Again, real-time traffic events (p2) such as accident or road-

blockage impact the usual traffic-flow - which needs to be

incorporated in the cost function. As A∗ achieves better

performance by using heuristics to guide its search, it is

a major challenge to define heuristics in practical travel-

routing and path-prediction system. The travel pattern is

analyzed using auto-regressive integrated moving average

[15] to find out probable values of GPS footprints of vehicles

in different time-slots from the historical movement traces.

The number of vehicles entering and exiting from a road

segment (ea) in a particular day d1 is defined by Enea
d1

and

Exea
d1

respectively. Similarly, the number of moving vehicles

are represented by Mea
d1

.

Enea
d1

= (En1,a
t0 , En1,a

t1 , . . . , En1,a
tm )

Exea
d1

= (Ex1,a
t0 , Ex1,a

t1 , . . . , Ex1,a
tm )

Mea
d1

= (M1,a
t0 ,M1,a

t1 , . . . ,M1,a
tm )

(7)

Next, for each segment 3 matrices are formed for all E edges

of p days.

M = (Ma,Mb, . . . ,ME)
t =

⎛
⎜⎜⎝

Mea
d1

MRb

d1
. . . MRE

d1

Mea
d2

MRb

d2
. . . MRE

d2

. . . . . . . . . . . .

Mea
dp

MRb

dp
. . . MRE

dp

⎞
⎟⎟⎠

t

(8)

Next, we execute the path finding algorithm on a Map-

Reduce platform for a faster response. Algorithm 1 shows

the basic steps of the procedure. RGraph is represented in

adjacency list format. The Mapper function, generates the

key-value pair for all the nodes present in the path.

∀m ∈ adjacency list : emit(m,FCost + d) (9)

FCost produces the cost to reach one node to another

based on other pre-defined parameters and heuristics given.

Another key problem here is to preserve the original graph
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structure. Hence, mapper emits (n,adjacency list) also for

tracking the road graph structure. All the reachable nodes

are grouped by the Sort or Shuffle function. Reducer selects

the path with minimum distance for each reachable node.

Also, additional information are recorded to keep track of

actual path. Each MapReduce iteration advances to extract

the optimal path by one hop. Multiple iterations explore the

whole graph. Basically, more reachable nodes are included

with subsequent iterations as the search expands.

Algorithm 1 : Path Finding using MapReduce platform

Function Mapper(NODEID n, NODE N ):
1: for NODEID S ∈ AdjacencyList(N) do
2: d ← ComputeDist(S, n)
3: EMIT(NODEID n,Fcost + d)

4: end for
5: Function Reduce(NODEID M, [d1, d2, ...]):
6: dmin ← ∞
7: Nneighbour ← Φ
8: for d ∈ [d1, d2, ...] do
9: if ISANODE(d) then

10: M ← d
11: else d < dmin

12: dmin ← d
13: end if
14: M.DISTANCE Computed ← dmin

15: Combine(M,d)

16: end for

E. Power consumption of CLAWER

To depict the performance of CLAWER in terms of power

consumption and delay, we have theoretically modelled the

interconnection of cloud-fog-edge-IoT devices [16] [17].

The delay in health-data transmission using SCceNB in

indoor-region is calculated as:

DeTran = (1 + Upfin)× (Damtup/Rupi)

+(1 +Dwfin)× (Damtdw/Rdwi)
(10)

where Damtup and Damtdw are the amount of data

(health/ location/ time) transmitted in uplink and downlink

respectively in indoor region. The data transmission rates

are represented by Rupi and Rdwi. The failure rates of

data transmission are Upfin and Dwfin respectively for

uplink and downlink. The delay for preliminary processing

of health-status in SCceNB is

Dpin = Dp/Prfog (11)

where Dpin and Prfog are the amount of health-data and

the speed of fog devices (SCceNB). Similarly, the energy

consumption of the IoT (mobile device/ sensors) during

transmission is represented as:

EinTran = Einup × ((1 + Upfin)× (Damtup/Rupi))

+Eindw × (1 +Dwfin)× (Damtdw/Rdwi))
(12)

The energy consumption of the IoT device during health-

data processing is represented by:

Epin = Eid × (Dp/Prfog) (13)

where Eid is the energy consumed by the IoT device

(mobile/ sensor) in idle mode. Similarly, the delay and power

consumption in the outdoor region is computed following the

same formulations.

IV. PERFORMANCE EVALUATIONS

To validate the proposed approach, a test-bed has been

built which consists of handheld-devices, wearable sensors

(collects health and movement data), fog device and cloud

server. We have used the Google Cloud Platform (GCP) for

the computation and storage of huge amount of movement

and health log.

A. Experimental testbed

The datasets have been collected from individuals of

different ages at Kharagpur, India region voluntarily. A total

of 65 subjects participated in the survey for six months.

The subjects were requested to install the Android applica-

tion and carry the wearable devices for the study period.

Fitbit is used for collecting health data. We have created

an Android application which is capable to communicate

with the wearable device, on-board sensors of the handheld

Android device and bluetooth signals from beacons. In

our experiment, the Raspberry Pi 3 is used as Bluetooth

beacon, where we install the Eddystone Bluetooth Beacon1

for sending data periodically. In this regard it has to be

mentioned that the data comes in the form of .csv file. In our

lab we have used a Raspberry Pi as fog device. The Android

application installed inside the smart phone accumulates the

movement and health data, and forwards to the fog device.

The Raspberry Pi acting as the fog device sends the data to

the cloud. Google IoT core instance is used as cloud server

in our experiment. The cloud after processing of the health

and movement data, predicts the health status and generate

health recommendations for the user. The health-related

recommendations are sent to the Raspberry Pi, which stores

them and sends to the user according to his/her requirement.

In case of abnormal health status and emergency, an alert is

provided to the user and subsequent procedures are initiated.

B. Experimental observations

The experimental results are illustrated in two broad

aspects: (i) power consumption and delay and (ii) accuracy

of path prediction.

1https://developers.google.com/beacons/eddystone
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Figure 5: Delay in proposed CLAWER framework (indoor)

Figure 6: Energy consumption in proposed CLAWER frame-

work (indoor)

Figure 7: Delay in proposed CLAWER framework (outdoor)

Figure 8: Energy consumption in proposed CLAWER frame-

work (outdoor)

Figure 9: Precision and recall values for path prediction of

CLAWER

Figure 10: Accuracy value for path prediction of CLAWER

For measuring delay and power consumption of the

framework, we have taken different samples of data from

the experiments. The results are shown in Figures 5 - 8.

The performance of CLAWER is compared with existing

Health-Fog system [8]. It is observed that our proposed

framework has outperformed the existing approach in a large

margin. Figures 5 and 6 illustrate the delay and energy

consumption indoor region. The fog devices (SCceNB) are

used to analyse preliminary health-status and communicate

with cloud in case abnormal health condition is detected.

SCceNB stores the health-profile along with medicine rec-

ommendations of patients and thus reduces the delay. It is

observed that CLAWER has around 28% better response time
and the energy consumption is reduced by 26%. Figure 7

and figure 8 represents the delay and energy consumption

in outdoor region, where RSUs are used as fog devices.

CLAWER utilizes markov-predictor for selecting the best

route to reach the destination in minimum delay. The results

show promising reduction of delay and energy consumption

compared to the existing (cloud-only solution) approach.

The performance of CLAWER framework for path predic-

tion from source to destination avoiding traffic congestion

is illustrated using Precision, Recall and Accuracy metrics

[16]. To demonstrate the effectiveness, we have segregated

the data into different time-bins such as 10mins, 20mins

upto 60mins. For each of the time-bins, we have computed

the metrics. Figure 9 shows the precision and recall values
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for several time-bins required to reach the destination from

source. It is observed that CLAWER has achieved high

precision and recall values in the range of 0.83− 0.93 and

0.84− 0.956 respectively. Figure 10 illustrates the accuracy

measure of the path prediction model and we observe greater

than 80% accuracy with all time-bins. While these values

represent high accuracy measures, along with increasing

time-bins, our CLAWER method maintains steady perfor-

mance. These metrics show encouraging results and depict

the overall effectiveness of CLAWER framework.

V. CONCLUSIONS

This paper has proposed a context-aware workflow frame-

work named CLAWER for health management. The envi-

ronmental context, health data, user movement data are col-

lected using IoT devices, which are assimilating data inside

the smart phone (edge), and sent to the cloud through a fog

device. For the indoor users SCceNB is used as fog device,

which performs preliminary processing on the data received

from the smart phone. Then the SCceNB forwards the data

to the cloud. The data analysis is performed by the cloud and

health recommendations are generated. For abnormal health

status, an alert is sent to user’s mobile device for emergency

care. CLAWER implements an end-to-end framework where

several agencies/ partners work together sequentially to pro-

vide better service. The experimental analysis show that the

proposed framework has better precision, recall and accuracy

as well as power consumption than the existing schemes.

While CLAWER is a generic framework, in future, we will

extend it for other domains such as defence application or

agricultural-IoT. The proposed CLAWER framework will

act as a foundation of bridging the gap between process

management and IoT data analytics.
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