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Abstract—By integrating Software-Defined Networking and cloud computing, virtualized networking and computing resources can be

dynamically reallocated through live migration of Virtual Machines (VMs). Dynamic resource management such as load balancing and

energy-saving policies can request multiple migrations when the algorithms are triggered periodically. There exist notable research

efforts in dynamic resource management that alleviate single migration overheads, such as single migration time and co-location

interference while selecting the potential VMs and migration destinations. However, by neglecting the resource dependency among

potential migration requests, the existing solutions of dynamic resource management can result in the Quality of Service (QoS)

degradation and Service Level Agreement (SLA) violations during the migration schedule. Therefore, it is essential to integrate both

single and multiple migration overheads into VM reallocation planning. In this paper, we propose a concurrency-aware multiple

migration selector that operates based on the maximal cliques and independent sets of the resource dependency graph of multiple

migration requests. Our proposed method can be integrated with existing dynamic resource management policies. The experimental

results demonstrate that our solution efficiently minimizes migration interference and shortens the convergence time of reallocation by

maximizing the multiple migration performance while achieving the objective of dynamic resource management.

Index Terms—Live migration, dynamic resource management, migration scheduling, software-defined networking, cloud computing

Ç

1 INTRODUCTION

WITH the rapid adoption of cloud computing for hosting
applications and always-on services, it is critical to

provide Quality of Service (QoS) guarantees through the
Service Level Agreements (SLAs) between cloud providers
and users. In this direction, many research works have
investigated various aspects of dynamic resource manage-
ment, such as delay-aware Virtual Network Function (VNF)
placement [1], load balancing [2], [3], [4], energy-saving [5],
flow consolidation, scheduled maintenance, as well as
emergency migration, in terms of accessibility, quality, effi-
ciency, and robustness of cloud services. Virtual Machine
(VM) is one of the major virtualization technologies to host
computing and networking resources in cloud data centers.
As a dynamic resource management tool, the live VM
migration is used to realize the objectives in resource

management by relocating VMs between physical hosts
without disrupting the accessibility of cloud services [6].

Cloud infrastructure and service providers, such as
AWS, Azure, and Google, have been integrating live VM
and container migration [7], [8], [9], [10], [11] for the pur-
poses, such as higher priority task preemption, kernel and
firmware software updates, hardware updates, and reallo-
cation for performance and availability. For example, the
Google cluster manager Borg controls all computing tasks
and container clusters of up to tens of thousands of physical
machines. In Google production fleets, a lower bound of
1,000,000 migrations can be performed monthly [11]. These
show the critical importance of migration management
techniques in dynamic resource reallocation.

Fig. 1 illustrates the general migration management
workflow. Based on the various objectives, the resource
management algorithms [2], [3], [4], [5], [12], [13], [14], [15],
[16] find the optimal placement by generating multiple live
migrations. With the generated multiple migration requests,
the migration planning and scheduling algorithm [17], [18],
[19], [20] optimizes the performance of multiple migrations,
such as total and individual migration time and downtime,
while minimizing the migration cost and overheads, such
as migration impact on application QoS. On the other hand,
the computing and networking resources are reallocated
and affected by multiple migrations.

As a resource-intensive operation, live migration con-
sumes both computing and networking resources when
transmitting the memory dirty pages from the source to the
destination host. It puts stress on both the migrating serv-
ices and other services in the cloud data centers. Thus, it is
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crucial to minimize migration interference during dynamic
resource management. There are continuous efforts to take
migration overheads into consideration during the dynamic
resource management [2], [3], [5], [12]. Currently, most
migration cost models consider overheads of single migra-
tion [21], [22], [23], such as migration time (single execution
time), downtime, transferred data with respect to the size of
memory, dirty page rate, data compression rate and avail-
able bandwidth while allowing multiple migrations in
dynamic resource management. For the migration selection,
existing resource management algorithms utilize the linear
cost model of single migration to minimize the overheads.
Then, with the migration requests generated as the input,
multiple migration planning and scheduling algorithms [17],
[18], [19], [20] decide the sequence of migration requests to
achieve the maximal scheduling performance.

There are obvious gaps regarding the multiple migration
performance between the existing dynamic resource manage-
ment policies, the migration cost model and the multiple
migration scheduling. The total migration time, the time inter-
val between the start of the first migration and the end of the
last migration, is the convergence time for the resource man-
agement solution. Overall, the real-time demands for live
migration should be met by improving the performance in
total migration time. For example, with the nature of highly
variable workloads, SLA violations will occur as the resource
demand surpasses the provisioned amount. In this case, a
faster livemigration convergence equals to less SLAviolations.

Resource dependency between two migrations, such as
sharing source and destination hosts or network paths, can
largely affect the performance of multiple migration schedul-
ing.With the network as a bottleneck, two resource-dependent
migrations can only be scheduled sequentially, while indepen-
dent ones scheduled concurrently [18], [19], [23]. If large
amount of resource dependencies among migrations are gen-
erated by dynamic resource management, the performance of
multiple migration scheduling will suffer a significant degra-
dation. Since single migration overheads are only related to
onemigration, it is critical to considermultiplemigration over-
heads in order to generate migration requests with less
resource dependencies.

Therefore, we incorporate the resource dependency of
multiple migrations into the cost model to bridge the gaps.
Based on the maximal cliques and independent sets of the
dependency graph of potential migrations, we propose a
concurrency-aware migration (CAMIG) selection strategy
for migrating VMs and destination hosts of the dynamic
resource management. The contributions of this paper are
summarized as follows:

� We propose and model the multiple migration
selection problem to minimize interference due to
resource dependency among multiple migrations

while achieving the objective of dynamic resource
management.

� We introduce the resource dependency graph to
model migration concurrency.

� We propose a flexible concurrency-aware migration
selection strategy for dynamic resourcemanagement.

� We conduct extensive experiments in an event-
driven simulation to show the performance improve-
ment in terms of total migration time in correspon-
dence with resource management objective.

The rest of the paper is organized as follows. Relatedworks
of migration cost management andmultiple migration sched-
uling are reviewed in Section 2. The system framework and
migration overheads are discussed in Section 3. The problem
model is described in Section 4. Section 5 proposes the concur-
rency-aware migration selection algorithm. Section 6 com-
pares our proposed algorithm with other dynamic resource
management algorithms in load-balancing and energy-saving
scenarios. Finally, Section 7 summarizes the paper.

2 RELATED WORK

Many dynamic resource management solutions utilize live
migration as a tool to achieve objectives, such as load-balanc-
ing [2], [3], [4], [24], energy efficiency [13], [14], network
delay [15], and communication cost [16]. Among these solu-
tions, some resource management algorithms consider a lin-
ear model of the total migration overheads as the sum of
individual migration overhead [2], [3], [4], [5], [12], [14], [24].
However, existing research only considers the objectives of
resource management while neglecting the multiple migra-
tion overheads and migration scheduling performance. Gen-
erally, during the dynamic resource management, there are
three steps to generate migration requests: source host selec-
tion; VM selection; and destination host selection. The over-
head or interference model of single migration [21], [22], [23]
is considered during the VMand destination selections.

For the VM and destination host selection, many dynamic
resource management policies consider single migration over-
heads in terms of the memory size of migrating VM, single
migration time, and the impact of onemigration on other VMs
located in the source or destination host, such as CPU, band-
width of host network interface, and application bandwidth.
In the load balancing scenario, Verma et al. [3] estimated the
migration cost based on the deduction of application through-
put. It selects the smallest memory size VMs from the over-uti-
lized hosts and assigns them to the under-utilized hosts in the
First Fit Decreasing (FFD) order. Singh et al. [24] proposed a
multi-layer virtualization system HARMONY. It migrates
VMs and data from hotspots on servers, network devices, and
storage nodes. The load balancing algorithm is a variant of
Toyoda multi-dimensional knapsack problem based on the
evenness indicator Extended Vector Product (EVP). It consid-
ers the single live migration impact on application perfor-
mance based on CPU congestion and network overheads.
Wood et al. [2] proposed the load balancing algorithm Sand-
piper that selects the smallestmemory size VM fromone of the
most overloaded hosts to minimize the migration overheads.
Mann et al. [4] focused on the VM and destination selection for
the load balance of application network flows by considering

Fig. 1. A general migration management framework.
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the single migration cost model based on the dirty page rate,
memory size, and available bandwidth.

In the energy-saving scenario, Xiao et al. [25] investigated
dynamic resource allocation through live migration. The pro-
posed algorithm avoids the over-subscriptionwhile satisfying
the resource needs of all VMs based on exponentially
weighted moving average to predict the future loads. It also
minimizes the physical machines regarding the energy con-
sumption. Similarly, LR-MMT [5] focused on energy saving
with local regression based on history utilization to avoid
over-subscription. It chooses the least memory size VM from
the over-utilized host and themost-energy saving destination.
Wu et al. [14] also studied the same problem of maximizing
the power saving through VM consolidation by limiting indi-
vidual migration costs. With the input of candidate VMs and
destinations provided by other resource management algo-
rithms, iAware [12] is amigration selector minimizing the sin-
gle migration cost in terms of single migration execution time
and host co-location interference. It considers dirty page rate,
memory size, and available bandwidth for the single migra-
tion time. They argue that co-location interference from a sin-
gle live migration on other VMs in the destination host in
terms of performance degradation is linear to the number of
VMs hosted by a physical machine in Xen. However, it only
considers one-by-onemigration scheduling.

Taking the migration task list generated by resource
algorithms as input, migration scheduling algorithms focus
on minimizing the migration time by efficiently scheduling
them. To find a possible sequence of migrations, one-by-one
scheduling [17] focused on avoiding the deadlock on the
available resource of physical hosts. The multiple migration
planning and scheduling algorithms [18], [19], [20] focused
on the migration performance in terms of minimizing the
total migration time by scheduling given migration tasks
concurrently when necessary. Table 1 summarizes represen-
tative related works and the proposed generic solution for
existing dynamic resource management algorithms in man-
agement target, migration overhead, interference, migration
performance, and migration scheduling method.

3 LIVE MIGRATION IN RESOURCE MANAGEMENT

We first introduce the background of live migration man-
agement including system overview and single cost model.
Then, we discuss the resource dependency problem.

3.1 System Overview

By integrating Software-Defined Networks (SDN) [26], the
SDN-enabled cloud data centers have a centralized solution
for the monitoring, planning, and scheduling of virtualized
computing and networking resources [27]. Fig. 2 illustrates
the migration framework in the orchestration layer. The
dynamic resource manager integrated with migration selec-
tor and multiple migration scheduler based on both moni-
toring computing resource and network resources. VMs are
hosted on physical machines to provide various cloud serv-
ices. Computing resources are controlled by VM Manager
(VMM), such as OpenStack Nova, while the networking
resources (such as available bandwidth and routing) are
managed by the SDN controller and VM Networking Ser-
vice, such as OpenStack Neutron, in a centralized way. The
SDN controller can dynamically manage the routing for
migration elephant flows to avoid the congestion and allevi-
ate the impact on cloud services. We can predict the cost of
live migration by the available bandwidth between the
source and destination hosts.

3.2 Single Migration Cost Model

To better understand the impact of multiple migrations on
performance in dynamic resource management settings, we
first introduce the mathematical model of a single live
migration [23]. Live migration can be categorized into two
types: post-copy and pre-copy migration. Since the pre-
copy migration [6] is the most widely used approach in
hypervisors (KVM, VMWare, Xen, etc), we consider it as the
base model. During the pre-copy live migration for VMs or
Containers, the hypervisor or the Checkpoint/Restore agent

TABLE 1
Comparison of Approaches on Dynamic Resource Management Through Live Migration

algorithm resource
management

single migration
overhead

dependency aware migration performance migration
scheduling

FFD [3] load/energy memory size - sum of migration cost -
HARMONY [24] load CPU, network - single exe. time one-by-one
Sandpiper [2] load memory size - single exe. time, migration

number
-

Xiao et al. [25] load/energy migration number - migration number -
lrmmt [5] load/energy memory size - migration number -
iAware [12] flexible single exe. time,

computing
- sum of normalized cost one-by-one

Our work
(CAMIG)

flexible migration model,
computing

computing, network
sharing

total mig. time, downtime multiple
scheduling

Fig. 2. System overview.
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in the userspace (CRIU) [28] iteratively copies the dirty
memory pages in the previous transmission interval from
the source host to the destination host.

Themost important aspect of singlemigration overheads is
the migration time or the single migration execution time.
According to the live migration process [6], the pre-copy live
migration consists of eight phases (see Fig. 3): pre-migration,
initialization, reservation, iterative memory copy, stop-and-
copy, commitment, and post-migration. Thus, live migration
consumes both computing resources (pre-/post-migration
overheads) and networking resources (memory copy and
dirty page transmission) [23]. The total single migration time
Tmig can be categorized into three parts: pre-migration com-
puting overheads, memory-copy networking overheads, and
post-migration computing overheads:

Tmig ¼ Tpre þ Tmem þ Tpost: (1)

Based on the iterative pre-copy illustrated in Fig. 3, the
migration performance in terms of memory-copy can be
represented as [23]:

Tmem ¼ r �Mem

L
� 1� siþ1

1� s
(2)

i ¼ min log s

Vthd

M

� �
;Q

� �
; (3)

where the ratio s ¼ r �R=L, r is the compression rate of
dirty memory, Mem is memory size, L is available band-
width, R is dirty page rate, i is the total migration round, Q
denotes the maximum allowed number of iteration rounds,
Vthd ¼ Tdthd � Li�1 is the remaining dirty pages need to be
transferred in the stop-and-copy phase, and Tdthd is the con-
figured downtime threshold.

3.3 Resource Dependency

Not only the overheads of the single migration but also
resource dependencies among multiple migrations can
heavily affect the performance of dynamic resource
management.

For dynamic resource management policies, there are
three selection steps: (1) selection of source physical hosts
that need to be adjusted based on the management objec-
tive; (2) selection of VM(s) which need to be migrated from
the selected host(s); and (3) selection of destination hosts of
live VM migrations among potential candidates. With the
input of candidate VMs and available destination hosts, dif-
ferent combinations of source and destination can achieve
the same objective of dynamic resource management. How-
ever, there is a huge difference between these combinations
in the scheduling performance of multiple migrations due

to resource dependencies among migrations. If sharing the
same source or destination hosts, or part of the network
routing, two live migrations are resource-dependent.

Two resource-dependent migrations can not be scheduled
at the same time [18], [23]. Because, according to Equation (2),
larger bandwidth allocationmeans a smallermigration execu-
tion time and downtime. Thus, the networking resources are
the bottlenecks which need to be optimized during the multi-
ple migrations. For example, we have a number of migrations
partially or entirely sharing network paths. Based on Equa-
tion (2), if scheduled at the same time, experimental results
[23] show that the total migration time will be more than the
sum of single execution time. Thus, sequential scheduling of
dependent migrations is the most efficient way to optimize
the migration performance [18], [23]. Meanwhile, migrations
which are resource-independent can be scheduled concur-
rently to reduce the totalmigration time. Therefore, it is essen-
tial to exclusively allocate one network path to only one
migration until it is finished to achieve the optimal total
migration time, average execution time, and downtime.

3.4 Illustrative Example

Fig. 4a shows the initial VM placement of the illustrative
example along with the resource dependency among possi-
ble migration selections. Fig. 4b illustrates the virtual con-
nections between VMs and the memory size (GB) and dirty
page rate (Mbps) for each. Moreover, the threshold of itera-
tion rounds is 30 and downtime threshold is 0.5 seconds.
The objective of the management policy is to reduce the
communication cost by VM consolidation. There are several
potential migration combinations which can fulfill the objec-
tive: M1: v11 : H1! H3 and v12 : H1! H4; M2: v11 : H1!
H3 and v22 : H4! H1; M3: v21 : H3! H1 and v12 : H1! H4;
and M4: v21 : H3! H1 and v22 : H4! H1. We can schedule
two resource-independent migrations concurrently (M2
and M3). On the other hand, one migration can only be
scheduled in sequence after the completion of another
dependent migration (M1 and M4).

We use Mininet [29] to emulate the iterative network
transmission of the live migration. The execution time for
each potential migration of v11, v

2
1, v

1
2, and v22 based on the

available bandwidth is 6.2791, 15.0889, 29.1980, and 12.5143
seconds, respectively. The total migration time of combina-
tion M1-M4 is 34.8858, 12.4334, 28.4711, and 27.6032 sec-
onds. Moreover, when the service network and migration
(control) network are running separately [30], the available
bandwidth for each live migration is the same (10 Gbps).
Based on multiple migration planning and scheduling algo-
rithms [18], [19], [20], the total migration time of four

Fig. 3. Pre-copy live migration.
Fig. 4. Scenario of resource dependencies during migration selections:
(a) Initial placement and (b) Virtual connections between VMs with mem-
ory size and dirty page rate.
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different combinations M1-M4 is 28.1936, 12.1227, 22.6056,
and 26.8893 seconds, respectively. Comparing M2 with M1
and M4, since there is no resource-dependent migration in
M2, the total migration time is significantly shorter. Com-
paring M2 with M3, although there is no network resource
sharing in both combinations, the single live migration
overheads of M2 is smaller due to the memory size, dirty
page rate, and available bandwidth. Summarily, although
all the potential combinations can achieve the desired objec-
tive, the scheduling performance of multiple migrations
varies considerably. Thus, it is essential to minimize both
resource dependencies among migration requests and sin-
gle live migration overheads during dynamic resource
management.

4 PROBLEM MODELING

In this section, we model the problem of multiple migration
selection to minimize the migration dependency while
achieving the objective of dynamic resource management as
a Mixed Integer Programming (MIP) problem.

In the model, H is the set of all candidate destination
physical hosts h 2 H while N denotes the set of candidate
VMs i 2 N for the migration. Hi is the set of candidate hosts
for VM i. Let binary variable yði;hÞ 2 1; 0f g indicate both ini-
tial and final placement of VM i in host h. When the VM i is
in the initial host pi, yði;piÞ ¼ 1. When VM i is in the host h in
the final placement, yði;hÞ ¼ 1. Otherwise, yði;hÞ ¼ 0. Let the
binary variable xði;hÞ 2 1; 0f g indicate whether VM i is in the
host i in the final placement. In other words, if VM i is
migrated to host h, then xði;hÞ ¼ 1 and h! ¼ pi. If VM i is not
migrated, then xði;hÞ ¼ 1 and h ¼ pi. Otherwise, xði;hÞ ¼ 0
which indicates that VM i is not in host h in the final place-
ment determined by the dynamic resource management
policy.

To generalize the problem, we can omit the VM index i
for h 2 Hi by adding extra constraints to xði;hÞ when some
destination hosts are not available for the specific VM i:

xði;hiÞ ¼ 0 8hi 2 Hi ¼ HnHi; (4)

where hi indicates the unavailable host for VM i.
The migration execution time thi of xði;hÞ ¼ 1; h! ¼ pi can

be calculated according to Equations (1), (2), and (3). Fur-
thermore, we normalize the migration execution time based
on the largest and smallest execution time among the differ-
ent source and destination pairs for every VMs.

As there can be only one destination and the VMmust be
allocated in one and only one host at the same time, we add
the following constraints to the binary variable xði;hÞ:

X
h2H

xði;hÞ ¼ 1 8i 2 N: (5)

The VM i can only be migrated from source host of the
initial placement hs ¼ pi where yði;piÞ ¼ 1 to the destination
host of the final placement hd that yði;hdÞ ¼ 1, xði;hdÞ ¼ 1 and
xði;piÞ ¼ 0 or not be migrated at all xði;hdÞ ¼ 1; hd ¼ pi. Thus,
we have the constraints expression as follows:

xði;hÞ � yði;hÞ � 0 8i; h 2 N �H: (6)

Constraints of the placement binary variable yði;hÞ are:

1 �
X
h2H

yði;hÞ � 2 8i 2 N; (7)

where
P

h2H yði;hÞ ¼ 2, when VM i is migrated to other host
in the final placement.

P
h2H yði;hÞ ¼ 1, when VM i is still in

host pi in the final placement.
Let zði;j;h1;h2Þ denote the binary variable indicating whether

VM i and j aremigrated to destination h1 and h2:

zði;j;h1;h2Þ 2 1; 0f g 8i; j 2 N;h1; h2 2 H; (8)

where zði;j;h1;h2Þ ¼ 1, if yði;h1Þ ¼ 1, yðj;h2Þ ¼ 1 and pi! ¼ h1,
pj! ¼ h2. Otherwise, zði;j;h1;h2Þ ¼ 0.

There is a resource dependency graph Gdep for all possible
migrations. Let vs;d denote a migration with source host s and
destination host d. If node vpi;h1 and vpj;h2 are connected in
graphGdep, then edge eði;j;h1;h2Þ ¼ 1. This indicates that poten-
tial migrations of VM i from host pi to h1 and VM j from host
pj to h2 are resource-dependent which can only be scheduled
in a sequential manner. Thus, the resource dependency
between two potential migrations can be represented as:

eði;j;h1;h2Þ � zði;j;h1;h2Þ: (9)

Let Oinit and Otar denote the initial score and target score
of dynamic resource management and " represent the toler-
ant value for accepted range. Let Oðxði;hÞÞ denote the objec-
tive score achieved after all migrations based on xði;hÞ
indicator. Thus, the constraints of final placement for
dynamic resource management can be represented as:

O xði;hÞ
� ��Otar

�� �� � " 8ði; hÞ 2 N �H: (10)

In practice, we can replace (10) for a specific placement score
function. For example, in load balancing policies, letwi andwj

denote the load of VM i and j. We can represent the con-
straints of dynamic resource target for the final placement as:

X
i2N

xði;h1Þ � wi �
X
j2N

xði;h2Þ � wj

�����
����� � "

0
(11)

where 8ðh1; h2Þ 2 H �H : h1 6¼ h2 and "
0
is the tolerant

value among the physical hosts.
In addition, let Ch

Mem;Core;Disk;Workð Þ = (1,1,1,1) denote the
normalized computing resource capacity of physical host h
for memory Mem, CPU Core, storage disk Disk, and total
workload Work. Therefore, the constraints of computing
resources, such as workload, can be represented by:

X
i2N

xði;hÞ � wi � Ch
Workð Þ8h 2 H: (12)

The single and multiple migration overheads, Intersingle
and Intermulti, are calculated as:

Intersingle ¼
X
i2N

yði;piÞ � xði;piÞ
� � � thi (13)

Intermulti ¼
X

i;j2N;h1;h22H
th1i þ th2j

	 

� e � z (14)

where e and z omit the subscripts for a concise equation.
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Therefore, the objective of the problem in terms of mini-
mizing both single migration overheads and resource
dependencies among multiple migration requests can be
formulated as:

minðIntersingle þ IntermultiÞ; (15)

subject to constraints (4), (5), (6), (8), (10), (11), and (12).
The objective function contains two parts: the first objec-

tive is for the sum of single migration overhead, where thi
indicates single migration time of VM i from source host pi
to destination host h. Note that, although only migration
time is modeled, it can be extended to other interference,
such as CPU congestions, heterogeneous links, bandwidth
overheads on other applications, and the number of co-
located VMs in the destination host. The second part is mul-
tiple migration overheads during multiple migration sched-
uling. Namely, it indicates how much overheads due to
resource dependencies happened. The fewer dependencies
in migration requests with less individual overheads, the
greater possibility of larger concurrent migration groups
during scheduling, which results in a shorter total migration
time.

5 CONCURRENCY-AWARE SELECTION

Solving the MIP model in Equation (15) is NP-hard, it is
not practical to use MIP solver to get the solution. In this
section, we introduce the Concurrency-Aware Migration
(CAMIG) selection algorithm for minimizing the resource
dependencies and overheads among migrations during
dynamic resource management. Based on the three selec-
tion steps of resource management policy, CAMIG has
the flexibility to integrate with existing algorithms. Pro-
vided that VMs are selected by the policy, CAMIG selects
migration destinations to minimize resource dependency.
Moreover, if only the management objective and source
host selection criteria are given, CAMIG selects both VMs
and migration destinations.

The rationale behind CAMIG is to select the migration with
the least resource dependency and single migration overhead
in each roundwith the currently selectedmigrations andmini-
mize the dependency for the future one based on maximal cli-
ques and independent sets of the resource dependency graph.
Graph theory concepts, such as maximal cliques and indepen-
dent sets, are explained in Section 5.2. There are mainly three
steps: (1) build the migration dependency graph; (2) get all
maximal cliques and independent sets of a migration from the
dependency graph; and (3) calculate the singlemigration inter-
ference and migration concurrency metric (MIGC) of candi-
datemigrations.

5.1 Migration Dependency Graph Build

We first explain how to generate the resource depen-
dency graph Gdep based on the potential migrating VMs
and destinations. For the undirected graph Gdep ¼ ðV; EÞ,
let v (v 2 V ) be the source-destination pair (src-dst) node
or vertex representing one potential migration. Migra-
tions with same src-dst node are categorized in list
M vsdð Þ. Let eðv; uÞ 2 E be the dependency between two
migrations with src-dst node v and u. As shown in

Algorithm 1, with the input of potential migrating VMs
and corresponding destination candidates Hi, we first
add src-dst nodes and classify potential migrations into
the corresponding node in M vsdð Þ. Then, we add edges
into Gdep based on the source and destination of each
node. Fig. 5 demonstrates an illustrative example of
resource dependency graph based on a given list of
potential migrations (v1 to v9) in a specific dynamic
resource management which involves 9 src-dst pairs in
the same physical network topology shown in Fig. 4a
(four hosts connected through one switch). Each vertex
vHsHd

indicates the pair of source and destination host
for a group of potential migrations. For the sake of con-
ciseness, we use v1 to v9 to represent node vH1H2

to vH4H2
.

Algorithm 1. Create Gdep and vsd Queues

Input: potential VM i 2 N , Destinations fHig
Result: migration depGraph Gdep, fMðvsdÞg
1 foreach i 2 N do
2 s pi;
3 foreach d 2 Hi do
4 AddNode(Gdep, vsd);
5 MðvsdÞ  MðvsdÞ [ i;
6 foreach v 2 V ðGdepÞ do
7 foreach u 2 V ðGdepÞ do
8 if v! ¼ u then
9 if ISDependent(u; v) then
10 AddEdge(Gdep, (u; v));
11 return Gdep , fMðvsdÞg

Regardless of the number of potential migrations, the
scale of Gdep only depends on the source and destination
hosts involved. Given a list of migrations M =
fm0; m1; :::; mng, the dependency graph GðMÞ of M can
be constructed as GðMÞ ¼ ðV; EÞ. As migrations with the
same source and destination are always resource-depen-
dent, we categorize migrations into different lists of src-
dst pair v. Then, all migrations can be represented as
fMðvsdÞg ¼ fMðv0Þ; :::;MðvjV jÞg. The size of node jV j in
the migration dependency graph will be the total combi-
nation of source and destination hosts. Through this pre-
processing, the total nodes of Gdep can be reduced from
as many as the potential migrations jMj to the migration
pair participated jV j. Therefore, the upper-bound of total
nodes in graph GdepðMÞ is jHsrcj � jHdstj. Hsrc and Hdst are
the number of potential source and destination hosts,
respectively.

Note that the dependency graph supports the multiple
routing transmission and dynamic migration routing based
on the current network status. In certain data center net-
works, multi-path transmission and multiple network

Fig. 5. A resource dependency graph with two of its maximal cliques
marked by color.
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interfaces of physical hosts are supported. Thus, the vertex
vPsd in Gdep can be extended to indicate the network paths Psd

for migrations from the specified network interfaces set s of
source host to interfaces set d of destination host. Let uðP Þ
indicate the available bandwidth of network paths P . Given
two pairs of src-dst interfaces set ðsj; djÞ and ðsk; dkÞ and cor-
responding network paths Pj and Pk, two vertices vj and vk
are resource-independent, when statement (16) are true and
sk \ sj ¼ ; and dk \ dj ¼ ;:

u Pj

� �� u Pj \ Pk

� � � min u Pj

� �
; NCj

s;NCj
d

	 

^

u Pkð Þ � u Pk \ Pj

� � � min u Pkð Þ; NCk
s ;NCk

d

� �
;

(16)

where ðNCj
s;NCj

dÞ and ðNCk
s ;NCk

dÞ indicate the network
capacity of interface set and u Pj

� �
and u Pkð Þ indicate the

available bandwidth of network paths. Otherwise, the two
vertices are resource-dependent. The upper bound of total
nodes in Gdep is the total number of Psd.

5.2 Maximal Cliques and Independent Sets

Before discussing how to get maximal cliques and maxi-
mal independent sets (MISs) which include a certain
node v, we first review some basic concepts, such as cli-
que, independent set, and degeneracy. A clique is a sub-
set of vertices of an undirected graph G such that every
two distinct vertices in the subset are adjacent [31]. The
maximal clique is a clique that cannot be extended by
including one more adjacent vertex. An independent set
of a graph G is the opposite of a clique that no two
nodes in the set are adjacent. Fig. 6 shows all maximal
cliques and MISs of the Gdep (Fig. 5). For example,
v3; v1; v2f g is one of its maximal cliques and v2; v7; v5; v9f g

is one of its MISs. The problems of finding all maximal
independent sets and cliques are complementary and
NP-hard [31], [32]. Finding all maximal independent sets
of a graph is equal to finding all maximal cliques of its
complement graph [33]. As a robust metric to indicate
graph density or spareness, degeneracy of a graph G is
the smallest value d such that every nonempty subgraph
of G contains a vertex of degree at most d [34].

A clique of Gdep is a set of src-dst nodes, where migra-
tions with these nodes can not be scheduled at the same
time. In contrast, the migrations from the src-dst nodes
within an independent set can be scheduled concurrently.
To check and evaluate the resource dependency or concur-
rency of each migration with src-dst pair node v, we need to
generate all maximal cliques fCvg and MISs fIvg of Gdep

including node v . Let fCg and fIg be all maximal cliques
and all maximal independent sets of Gdep, where C 2 fCg
and I 2 fIg is one of the maximal cliques and MISs. Let
Cv 2 Cf g and Iv 2 If g denote one of the maximal cliques
and independent sets including node v. Then, Cvf g � Cf g
and Ivf g � If g.

Algorithm 2. Get All MISs of Node v in Gdep

Input: G; �G; v, node neighbors in �G f �GNðnÞg; n 2 V
Result: All MISs fIvg of node v, v 2 V ðGdepÞ

1 Function Cliques( �G, cand)
2 n GetNodeMaxDegree( �G);
3 foreachm 2 cand� �GNðnÞ do
4 delðm; candÞ;
5 I  I [ fmg;
6 if �G \ �GNðmÞ ¼ ; then
7 fIvg  fIvg [ I;
8 else
9 if cand \ adj½m	! ¼ ; then
10 Cliques( �G \ �GNðmÞ, cand \ �GNðmÞ);
11 delðm; IÞ;
12 End Function
13 Iv  ;; I  fvg;
14 cand cand�GNðvÞ � fvg;
15 V ðGÞ  V ðGÞ �GNðvÞ � fvg;
16 return Cliques( �G, cand);

We propose an algorithm for listing fCvg and fIvg based
on fCg of dependency graph. For getting all maximal cli-
ques fCg of a graph, the general-purpose algorithms for list-
ing all maximal cliques [33], [35] based on Bron-Kerbosch
algorithm [31] take exponential time due to the maximum
possible number of cliques. These general-purpose algo-
rithms are not sensitive to the density of a graph. Therefore,
parametrized by degeneracy, we use a variant algorithm
Bron-Kerbosch Degeneracy [36] to generate all maximal cli-
ques of the original resource-dependency graph without
duplication. All maximal cliques are generated in the tree-
like structure by employing the pruning methods with piv-
oting to allow quick backtrack during the search. Based on
the Bron-Kerbosch algorithm with pivoting, the Bron-Ker-
bosch Degeneracy uses a degeneracy ordering to order the
sequence of recursive calls without pivoting at the outer
level of the original Bron-Kerbosch algorithm [36]. Applied
to a n-vertex graph with d degeneracy, it lists all maximal
cliques in time O dn3d=3

� �
.

As shown in the dependency graph property analysis
(Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2021.3139014) and the time analysis in the
performance evaluation (Section 6.2), it is not practical to
generate all maximal independent sets fIg due to the den-
sity of the complement of Gdep. Thus, we propose a clique-
based maximal independent set algorithm to calculate fIvg.
As shown in Algorithm 2, it fist excludes all adjacent nodes
of v in the resource dependency graph G. Then, it chooses
node with maximum degree from each connected candi-
dates of the remaining complement graph Ĝ recursively in
a branch-and-bound method until there is no vertex left.
Algorithm 2 can achieve the worst-case optimal time com-
plexity of finding all MISs of a node v as O 3m=3

� �
[35], where

m ¼ jV ðGÞ �GNðvÞj � 1.

5.3 Concurrency for Migration Candidates

In this section, we introduce the migration concurrency
metric (MIGC) to indicate the resource dependency level
of a potential migration. It is based on the maximal cli-
ques and independent sets of an src-dst pair node. Let

Fig. 6. All maximal cliques and MISs of Gdep in Fig. 5.
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Mx
mig be the list of migrations have been selected cur-

rently. Let Mx be the list of src-dst pair nodes vj of each
migration mj 2Mx

mig. For the first round x ¼ 0, when the
list of selected VM migration is empty, MIGC can be cal-
culated as:

MIGCv ¼ k �max Cvj jð Þ=max Ivj jð Þ (17)

where Iv 2 Ivf g and Cv 2 Cvf g, k is the coefficient for the
value normalization. When x > 0, the MIGC of migration
with src-dst pair node v in Gdep can be represented as:

MIGCMx

v ¼MIGCliqM
x

v þ 1
�
MIGIndM

x

v (18)

The migration independent score of the testing node v
regarding to the selected migration list can be calculated as:

MIGIndM
x

v ¼
P

vj2Mx

P
Iv2fIvg vj \ Iv

�� ��
fIvgj j � Mxj j (19)

where
P

vj2Mx

P
Iv2fIvg vj \ Iv

�� �� indicates how many times
src-dst nodes vj of migration from the currently selected list
vj 2Mx is shown in all MISs of the testing node v.
fIvgj j � Mxj j is the product of the total number of Iv and the
number of selected migrations.

Similarly, the migration clique score for src-dst pair node
v according to the node list of currently selected migrations
Mx is represented as:

MIGCliqM
x

v ¼
P

vj2Mx

P
Iv2fCvg vj \ Cv

�� ��
fCvgj j � Mxj j (20)

where the numerator part indicates how many times the
src-dst pair nodes of currently selected migrations is
included in the maximal cliques of the node v.

The range of the migration clique score and independent
set score is MIGCliq 2 ½0; 1	 and MIGInd 2 ð0; 1	. The larg-
est MIGCliq is 1 when all src-dst pair nodes of selected
migrations in M shown in every maximal clique of the test-
ing node.MIGCliq is 0 when there is no pair node included.
If there is no src-dst pair from the existing migration list
included in the MISs of node v, we set the second part of
MIGC as max 1=MIGIndð Þ þ 1 with current minimum
MIGInd value. Thus, the smaller MIGC of a potential
migration, the fewer migration dependencies for the
selected migration lists and future selections. Note that we
do not need to check MIGC of two migrations with the
same node, as the result will be the same.

5.4 Concurrency-Aware Migration Selector

In this section, we explain the details of the proposed
concurrency-aware migration selector (CAMIG) in Algo-
rithm 3. It minimizes resource dependency and migra-
tion overheads while achieving the objective of resource
management. Given the input of the objective of the
dynamic resource management, the objective function,
available VMs, candidates source and destination hosts,
the networking information monitored by the SDN con-
troller, and the VM and host information, CAMIG will
generate the live migration list which consists of the
selected VMs and the corresponding destinations.

Algorithm 3. CAMIG

Input: Performance Objective Score
, protential VMs i,
sourceHs, dstHd

Result: Selected Migration ListMmig

1 Step 1. get node clique matrix
2 Gdep, fMðvsdÞg  CreatedepGraph(Hs;Hd; k);
3 fCg  allCliques(Gdep);
4 x 0; Mx  ;; Mx

mig  ;;
5 do
6 Step 2. get candidate VMs
7 UpdateMigInterference(VMi,H

i
d, L

i
sd);

8 ^Scorexþ1, fvjsdg, fmj
sdg  GetMigCandidates(pcurrent,

fwig, fHi
dg, Scorex,Mx

mig);
9 Step 3. select the optimal migration
10 v̂jsd  v0sd; m̂

j  m0
sd;

11 if jfvjsdgj > 1 then
12 foreach v 2 fvsdg then
13 Cv = allCliques(fCg, v);
14 Iv = allIndepSet(Gdep, fCg, v);
15 if Interj;v < Intermin then
16 Intermin  Interj;v;
17 v̂jsd  vjsd; m̂

j  mj
sd;

18 Mxþ1  Mx [ v̂jsd; Mxþ1
mig  Mx

mig [ m̂j
sd;

19 UpdatedepGraph(Gdep, fCg, m̂j
sd, v̂

j
sd)

20 while j ^Scorexþ1 � Score
j > d and ^Scorexþ1 > ^Scorex and
xþ 1 < jfmgj

21 ReturnMmig

In Step 1, Gdep and M vsdð Þ are generated according to
Algorithm 1. In line 3, we find all maximal cliques fCg of
Gdep. From line 5-18, at each round x, we select the optimal
migration from src-dst node v̂jsd based on both MIGC and
single migration overhead Intersingle. As a result, it gets the
overall minimal dependencies and single overheads of the
total migrations to satisfy the objective of the dynamic
resource management. For Step 2, in each optimal round, it
first updates the single migration interference of each candi-
date VM for its potential destinations. According to the
selected migrations of previous rounds Mx

mig and current
placement, it gets the newest VM to Host mapping. Then, it
obtains the candidate migrations fmj

sdg and corresponding
pairs vjsd in this round with the same objective score
^scorexþ1. It can generate more potential migrations by

enlarging the score tolerance of the optimal objective in
each round. For Step 3, the optimal migration with the mini-
mum total migration interference Intermin is selected. It first
calculates fCvg based on all maximal cliques fCg generated
based on Bron-Kerbosch Degeneracy algorithm and fIvg
according to Algorithm 2. Then, based on the pair list of
already selected migrations Mx, the migration overhead of
migrationmi with src-dst pair v can be calculated as:

Interi;v ¼ kmig � Interi;vsingle þ kmig � Interi;vsingle �MIGCMx

v ;

(21)

where kmig is the coefficient for the value normalization of
single migration overheads. Then, the single migration
overhead Interi;vsingle and MIGCMx

v can be calculated based
on Equation (1), (2), and (3), and (17), (18), and (19), respec-
tively. In line 17, it adds the optimal migration of this round
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m̂j
sd and its pair node v̂jsd to the currently selected migration

listMx
mig and corresponding node listMx.

In line 19, algorithm UpdatedepGraph updates the depen-
dency graph and all maximal cliques according to the
selected migration. Certain potential migrations related to
the selected optimal migration are deleted from the the pair
list. For example, in Section 3.4, if we choose migration v11 :
H1! H3, then v21 : H3! H1 is excluded for future selec-
tion. Note that we do not need to use Bron-Kerbosch Degen-
eracy to recalculate fCg based on the new subgraph
(Theorem 1). If the pair list is empty after update Msd ¼ ;,
the corresponding node vsd will be removed from Gdep and
fCg. If the updated clique size is 1 and the only one vertex
left has connected edge, remove such clique. Duplicated cli-
ques are also removed.

The stop conditions of CAMIG are: (1) at the round x, the
currently selected VM migrations achieve the objective of
dynamic resource management; (2) the objective is not
improved in the last round; (3) round number equals to the
total number of potential VMs.

Theorem 1 (Correctness of UpdatedepGraph). Given a
graph G ¼ ðV;EÞ, V 6¼ ;, its all maximal cliques fCg and its
subgraph G

0 ¼ G½V nfv0 g	 with removing vertices fv0 g, results
of UpdatedepGraph algorithm fC 00 g and listing all maximal cli-
ques fC 0 g of G0 are the same.

Proof. Bron-Kerbosch Degeneracy generates all and only
maximal cliques fCg of G [36]. (1) For 8C 0 , 8C 00 , jC 0 j ¼ 1
and jC00 j ¼ 1. Because the V ðGÞnfv0 g ¼ V ðG0 Þ. Thus,
fC0 g ¼ fC 00 g. (2) For 8C0 , 8C 00 , jC0 j > 1 and jC00 j > 1. For
the sake of prove, we assume that 9C 0 ; C0 =2 fC 00 g. Then,
9Ce; 9C 0e, Ce ¼ C

0
e [ fveg [ fv

0
eg, where Ce 2 fCg, C

0
e 2

fC0 g, part of remaining vertices fveg � V ðGÞnfv0 g, part of
removing vertices fv0eg � fv

0 g. Then, we have C
0
e [ fveg 2

fC00 g. If fveg 6¼ ;, because 8C 0 ; 9C;C 0 � C, then C
0
e [

fveg 2 fC 0 g. We have a contradiction, as C
0
e is a maximal

clique of G
0
. If fveg ¼ ; or Ce ¼ C

0
e, as the Updatedep-

Graph removes all v
0 2 fv0 g, we have a contradiction C

0
e 2

fC00 g. Thus, 8C 0 2 fC 00 g. Similarly, we can prove 8C 00 2
fC0 g. Therefore, fC 0 g ¼ fC 00 g. tu
The worst-case running time of Bron-Kerbosch Degener-

acy is O dn3d=3
� �

[36] with total n vertices and degeneracy d.
The upper bound of all maximal cliques/independent sets
of a Graph G is n� dð Þ3d=3. Thus, given c maximal cliques,
the time complexity of the algorithm for calculating MIGC
is OðcnÞ. Then, the worst-case running time of CAMIG is
O n� dð Þn23d=3
� �

. We perform extensive computational
evaluation on time complexity in Section 6.2. It demon-
strates that algorithm CAMIG is very fast in practice.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
concurrency-aware migration selection (CAMIG) algorithm
for dynamic resource management with several parameters,
such as total migration time, total migration number, and cor-
responding dynamic resource management performance in
load balancing and energy-saving scenarios. We used both
real-world workload trace from PlanetLab [37] and synthetic
workloads for the evaluation. We also performed extensive

computational experiments for time analysis. The results
show that the proposed algorithm can significantly improve
the multiple migration performance [20] while achieving the
target of resourcemanagement.

The scalability of Mininet is limited due to the limitation of
its resource usage and the operating systems, which prevents
the cloud-scale simulations. Furthermore, it can not simulate
the computing resource for the dynamic resource manage-
ment and multiple migration scheduling. Thus, we have
implemented components for themultiplemigration schedul-
ing simulations [20] based on the CloudSimSDN [38]. The
accuracy of network processing of CloudSimSDN compared
to Mininet is validated in [39]. Based on the phases of pre-
copy migration, the event-driven simulator1 can evaluate the
performance of multiple migrations in terms of the total
migration time, migration execution time, total transferred
data, and downtime.

6.1 Load Balancing Scenario

In this section, we evaluate the impact of migration concur-
rency during the dynamic resource management on the per-
formance of multiple migration scheduling in load balancing
scenarios. The target of the resource management policy in
this experiment is to keep the total CPU utilization of each
physical host to 50%. For other solutions besides the optimal,
we set the target range of the total CPU utilization from 45%
to 55%. We compare our algorithm CAMIG with the result of
the optimal and other load-balancing algorithms: Sandpiper
[2], FFD [3], and iAware [12]. We first evaluate algorithms on
small-scale experiments with 8 physical hosts in a Fat Tree.
Then, we extend the experimental scale for complex scenarios
with more resource dependencies. In extensive experiments,
by integrating the proposed concurrency-aware algorithm
with existing dynamic resource management algorithms, we
directly evaluate and illustrate the scheduling performance
improvement in multiple migration planning and scheduling
algorithm [20].

6.1.1 Experimental Setup

In order to focus on the performance of multiple migrations
for different migration requests generated by various
resource management algorithms, we controlled variables
of single migration overheads, such as dirty page rate, that
other comparison algorithms ignore. In the load-balancing
scenario, we use the same source selection as Sandpiper to
choose over-utilized source hosts for potential migration.

The actual location of physical hosts in Fat Tree topology
with different resource utilization is generated randomly,
which causes different source and destination selections
and resource dependencies in each random setup. Without
specific explanation, the result is the average value of 10
experiments. Causing utilization difference among hosts,
the initial placement of VMs in each machine with different
CPU utilization and memory size is shown in Fig. 7. To dif-
ferentiate the migration value in management objective and
migration schedule, we create VMs with different combina-
tions of high, medium, and low value of resource utilization
and memory size. The CPU utilization of each VM is from

1. CloudSimMig. https://github.com/hetianzhang/CloudSimMig
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4% to 20% of the total host CPU resource. As a result, the
CPU utilization of each host is from 10% to 90%. The Mem-
ory size of each VM is from 2 GB to 16 GB, which can result
in various migration overheads.

Other parameters of pre-copymigration are set as the same
for each VM. The dirty page rate factor is 0.001 per second.
For example, with a 0.001 per second dirty page rate factor,
the dirty page rate of a VMwith 16 GB memory is 128 Mbps.
The data compression ratio is 0.8. The iteration and downtime
threshold is 30 and 0.5 seconds, respectively. We create a k-8
FatTree Data Center Network (128 hosts) with 1 Gbps band-
width between switches. For the purpose of irrelevant param-
eter exclusion in experiments, each physical host has 16 CPUs
with 10000 MIPS each, 10GB RAM, 1 TB storage, and 1 Gbps
network interface. Note that hosts are not required to be iden-
tical in the proposed algorithm.

Dual simplex (Gurobi optimizer 9.02 and Python-MIP
1.6.73) were used to get the optimal solution of theMIPmodel.
We also proposed a baseline algorithm called HostHits (hht).
As shown in CAMIG selections, several potential destinations
can achieve the same objective of dynamic resource manage-
ment. It chooses the least selected/hit host as the destination
of VMmigration in eachmigration selection iteration.

For original Sandpiper, FFD and iAware without multi-
ple migration scheduling, the sum of migration execution
time is the actual total migration time of these algorithms,
because they only consider one-by-one migration schedul-
ing. However, given the multiple migration requests, we
apply the multiple migration planning and scheduling algo-
rithm [20] to all resource management algorithms in experi-
ments and evaluate and show the results of corresponding
performance in multiple migration scheduling.

The rationale is that Sandpiper chooses the largest vol-
ume/memory VM from one of the most overloaded physi-
cal host to minimize live migration overheads. The volume
as the multi-dimensional loads indicator is defined as:
Volume ¼ 1

ð1�cpuÞð1�netÞð1�memÞ [2], where cpu, net, and memory
are normalized utilizations of corresponding resources. FFD
(First-Fit Decreasing) algorithm selects the smallest size
VMs from over-utilized hosts and assigns them in the FFD
ordering of the spare resources to under-utilized hosts.
iAware considers both co-location VM interference and the
single live migration overheads. The co-location VM inter-
ference is linear to the number of VMs one physical machine

hosts in Xen. The migration selection in iAware is sequen-
tially decided in each round of the greedy algorithm.

6.1.2 Scalability Evaluation

We extend the scale of experiments (multi2, multi3, and
multi4) by multiplying the same mapping 2, 3, and 4 times.
Total ofN hosts are randomly placed among the firstN num-
ber locations in the Fat Tree topology with 128 hosts. Each
scenario has 16, 24, 32 candidate destination hosts with a
total 76, 114, and 152 potential migration VMs, respectively.
For example, the physical Host 16, Host 8 and Host 0 have
the same VM initial allocation. However, for each scenario,
the placement of each physical host in the FatTree is gener-
ated randomly. As the resource management algorithms do
not have the prior knowledge of the initial placement, the
combination of source, destination, and instances during
migration selection is increased exponentially. As a result,
with the experiment scale increasing, more random source
and destination combinations of potential migrations are
generated for each experiment. We conducted 10 experi-
ments in each scenario and show the average results.

Tables 2 and 3 show the results of the optimal solution,
CAMIG and the optimal solution with Sandpiper VM selec-
tion, Sandpiper, FFD, and iAware in total migration time
with multiple migration schedule, total migration execution
time (one-by-one schedule), the number of dependent
migration tasks, multiple migration interference value, and
the load-balancing performance (standard deviation of CPU
utilization). The multiple migration interference value is the
sum of normalized single overheads from dependent migra-
tions. Although all physical hosts are arranged randomly,
the optimal result should be the same as in scenario multi1.

Analysis. Tables 2 and 3 show that the MIP model achieves
the optimal in all scenarios. With the source host selection
fromSandpiper, comparingCAMIGwith the optimal solution,
as the problem scale increases, CAMIG can maintain the opti-
mal performance in multiple migration scheduling as well as
the number of resource-dependent migrations. In multi3 and
multi4, CAMIG over-satisfies the requirement of load-balanc-
ing by losing the value of multiple migration interference. For
the Sandpiper and iAware, as the the scale of the problem
increases, the number of dependent migrations and the value
of multiple migration interference increase dramatically,

Fig. 7. Initial mapping for 8 different physical hosts with CPU utilization
(%)/Requested Memory(GB).

TABLE 2
Total Migration Time/Sum of Migration Execution Time Compar-

ison in the Extending Mapping Scenarios

approach multi1 multi2 multi3 multi4

optimal 71.5313 /
172.9520

71.5313 /
345.9040

71.5313 /
518.8560

71.5313 /
691.8080

camig 86.5060 /
189.5725

86.5060 /
379.1451

86.5060 /
568.7177

86.5060 /
758.2903

sandpiper 86.5060 /
189.5725

86.5060 /
379.1451

99.4928 /
594.7547

99.4860 /
784.4188

optimal
+sandpiper

86.5329 /
189.6183

86.5329 /
379.2367

86.5094 /
568.8412

86.5329 /
758.4734

ffd 73.2070 /
133.0450

88.1817 /
266.1101

73.2203 /
399.2128

88.1949 /
532.3334

iaware 86.5158 /
174.6271

578.5142 /
969.6401

374.0354 /
1448.9137

419.1750 /
1941.2873

2. Gurobi solver, https://www.gurobi.com/
3. Python-MIP. https://github.com/coin-or/python-mip
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which leads to a larger total migration time in both multiple
and one-by-one scheduling. FFD can not satisfy the require-
ment of load-balancing in the system.

The total migration time of Sandpiper is increased by
15.01% in multi3 and multi4. In Table 3, although FFD has
the lowest total migration time and migration execution
time, it cannot achieve the ideal load-balancing perfor-
mance. The standard deviation of FFD is the largest among
other algorithms. Moreover, the largest total migration is
increased by 21.33% compared to the lowest. For iAware,
the actual total migration time equals to the total migration
execution time by only allowing one-by-one scheduling.
With multiple migration scheduling, iAware has the worst
performance in total migration time and load-balancing due
to the trade-off between migration execution time and co-
location interference. The total migration time varies largely
in different scenarios, increasing at most 568.68%.

6.1.3 Extensive Evaluation

As every load-balancing policy has its own logic for VM selec-
tion, it is difficult to evaluate the improvement of multiple
migration directly. Thus, in this section, we extended the
experiments by integrating theHostHits andCAMIGalgorithm
with the existing policies: iAware, FFD, and Sandpiper. With
the benefit of flexibility, CAMIG can be adapted to other exist-
ing dynamic resource management algorithms. We randomly

generated VMMemory Size from 8 to 14 GBwith the same sce-
narios (Fig. 7). Each result is the average value of 10 experi-
ments in each scenario. Fig. 8 illustrates the multiple migration
performance in total migration time based on the migration
requests of these policies with one-by-one scheduling andmul-
tiple migration scheduling (+sch), and multiple migration
scheduling performance based on the migration requests of
CAMIG (+camig) andHostHits (+hht) in 4 different scenarios.

Analysis. Fig. 8a indicates that iAware with CAMIG can
achieve the best performance with multiple migration sched-
uler in all 4 scenarios. The performance is increased by 20.55%,
57.57%, 70.02%, and 77.93% when migration requests sched-
uled by the multiple migration scheduler, respectively. How-
ever, with CAMIG the performance is increased by 48.54%,
72.63%, 73.52%, and 86.48% compared to the original iAware
and increased by 35.29%, 35.50%, 11.89%, and 38.68% com-
pared to the performance of iAware with only multiple migra-
tion scheduler. Moreover, although iAware with HostHits
generally has a better performance compared to iAware
+scheduler, as shown in scenario multi3, it results in a worse
totalmigration timedue to creating a larger clique of the depen-
dency graph. For FFD, CAMIG can increase the performance
up to 91.90%, 57.82%, and 26.42% compared to FFD with one-
by-one scheduler, multiple migration scheduler, and HostHits
(Fig. 8b).Moreover, Fig. 8c shows that theperformance of Sand-
piper with CAMIG in total migration time is increased by up to

TABLE 3
Comparison of Dependent Migrations/Multiple Migration Interference/Standard Deviation of CPU Utilization

approach multi1 multi2 multi3 multi4

optimal 5/ 3.1648/ 0 10/8.9682/ 0 15/ 10.2091/ 0 20/ 14.3697/ 0
camig 10/ 6.2048/ 7.4286 20/13.0928/ 6.9333 30/ 31.2534/ 6.7826 40/ 36.4625/ 6.7097
sandpiper 10/ 6.2048/ 7.1428 34/ 22.9404/ 6.6667 55/ 58.0650/ 6.6087 76/ 70.0414/ 6.5161
optimal+sandpiper 10/ 6.8879/ 14.2857 20/ 13.9321/ 10 30/ 21.4943/ 8.7826 40/ 32.6992/ 9.7419
ffd 11/ 6.3697/ 84.5714 21/ 19.2937/ 78.9333 33/ 23.1770/ 77.2173 54/ 45.3416/ 76.3870
iaware 15/ 9.0528/ 35.7142 53/ 49.4754/ 210.8 48/ 38.6271/ 235.9130 79/ 68.3587/ 248.25801

Fig. 8. Performance comparison with one-by-one, direct multiple scheduling, CAMIG and HostHits.

Fig. 9. Runtime comparison between optimal and CAMIG. Fig. 10. Average and maximum degree and degeneracy.
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87.87% and 24.68% than Sandpiper with one-by-one scheduler
andmultiplemigration scheduler, respectively.

6.1.4 Summary

In summary, CAMIG can efficiently improve the multiple
migration performance while achieving the target of load-
balancing resource management. The performance of com-
paring load-balancing policies can be increased by up to
91.90%, 57.82%, and 28.89% as compared to the one-by-one
scheduler, the multiple migration scheduler, and HostHits,
respectively. CAMIG outperforms the original policy and
the HostHits. The round-robin algorithm HostHits cannot
guarantee the multiple migration performance though it
generally can decrease the total migration time.

6.2 Processing Time Analysis

In this section, we analyze the time complexity of the pro-
posed CAMIG algorithm. The experiments were run in the
computer with i7-7500U CPU with 2.70 GHz, and 15.9 GB
RAM in Windows 10 64-bit Operating System. Fig. 9 illus-
trates that the runtime of the optimal solution solved by
MIP solver is increased exponentially against the linear
growth of the problem size. The runtime of the optimal
solution on average is 3.07s, 251.51s, 5373.35s, and 42388.0s
in 4 scenarios, respectively. Thus, it is impractical to gener-
ate the optimal result when facing the problem in real life.

Fig. 10 illustrates the connectivity properties of depen-
dency graph in terms of average degree

P
d Gð Þ= V Gð Þj j, maxi-

mum degree D Gð Þ, and degeneracy of the dependency k Gð Þ
and its complement �G. The number of maximal cliques is 12,
28, 42, 56 with the degeneracy (a measure of graph spareness)
of the dependency graph as 6, 14, 22, 30. Therefore, it is much
easier to generate all maximal cliqueswith a small degeneracy.
However, the degeneracy of the complement dependency
graph increased dramatically as 16, 85, 211, 393. Thus, it is
impractical to generate all maximal cliques of the complement
graph as the problem size becomes significantly large. In other

words, Bron-Kerbosch Degeneracy algorithm can reach the
worst-case runtime when the graph becomes considerably
dense. As a result, it can only generate all 661 maximal inde-
pendent sets in the smallest scale scenario (multi1). Fig. 11
shows the runtime comparison of CAMIG in total processing
time, finding all maximal cliques, and generating all maximal
cliques and independent sets for every node. As shown in
Algorithm 2, we do not need to calculate all maximal cliques
and independent sets of every node in the graph. The all_node-
s_cliques/indep illustrates the upper-bound of runtime. The
processing time of CAMIG is increased linearly against the
total src-dst node in resource dependency and the average
degree or the degeneracy of the complement of the depen-
dency graph as shown in Fig. 10.

6.3 Long-term Energy Saving Scenario

To evaluate the proposed algorithm with the real-world
long-term workloads [37], we compared CAMIG with LR-
MMT [5] in the energy-saving scenario in terms of total
migration time, migration numbers, downtime, total/aver-
age CPU serve time with and without the timeout work-
loads, and energy (power) cost of both hosts and switches.

6.3.1 Evaluation Configuration

For the long-term experiments, we created a k-16 FatTree
topology (1024 hosts) with 1 Gbps physical links between
switches to simulate the environment with limited network
resources for live migrations. Each physical host has 8 CPUs
with 4000MIPS, 1024 GBMemory size, 1000 GB Storage, and 1
Gbps network interface. The real-world workload trace of
CPU utilization from Planetlab [37] was used for the experi-
ments running in 24 hours. There are 1052 CPUutilization files
mapping to the same amount of VMs.We generated thework-
loads based on the MIPS requirement and the CPU utilization
varied along the time. In order to illustrate the influence of
multiple migration performance, there is no application traffic
between different VMs other than the migration flows. There
are 4 flavors of VM: 2 vCPUs, [2500, 2000, 1000, 1000]MIPS, [2,
4, 4, 2] GB RAM, 100 Mbps virtual bandwidth, and 4 GB Disk
Size. The initial placement of VMs are allocated based on the
optimization criteria defined by LR-MMT [5].

The LR-MMT algorithm utilizes the Local Regression
(LR) method to predict overloading hosts in the upcoming
monitor interval. Minimum Migration Time (MMT) policy
is used for VM selection to minimize migration overheads.
During each monitoring interval of dynamic resource man-
agement, CAMIG, as a flexible algorithm, utilizes the same
local regression to detect over/under-utilized hosts. In LR-

Fig. 11. Runtime of CAMIG, all maximal cliques, and all maximal cliques/
independent sets of nodes.

TABLE 4
Performance Comparison Between LR-MMT, HostHits, CAMIG in Energy-Saving Scenario

algorithm mig. num
P

total mig. time
P

dt. (s) workload num serve time incl. and excl.
timeout (s)

energy cost (Wh)

total timeout total excl. avg. excl. avg. incl. total host switch

NoMig - - - 1506464 0 11214923.24 7.44 - 1733432.22 1733432.22 0
LR-MMT 3741 28038.66 355.079 1399857 106497 8700783.51 6.21 1105.63 470492.05 465412.23 5079.82
HostHits 3680 25872.79 359.032 1416806 89550 9028858.54 6.37 447.61 487254.15 481810.21 5443.94
CAMIG 2534 7453.37 178.071 1458906 47522 9945354.17 6.82 80.76 450966.81 447817.74 3149.07
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MMT, though there are many equivalent optimal destina-
tions, it only chooses the first fit. For the sake of fair compar-
ison, destination candidates used in CAMIG are provided
by the same energy-saving policy in LR-MMT.

6.3.2 Evaluation Results

As shown in Table 4, CAMIG algorithm outperforms both
LR-MMT and HostHits. The total energy consumption
under no dynamic resource management is 1733432.22 Wh.
The LR-MMT algorithm saves 72.86% energy consumption.
Comparing CAMIG with LR-MMT, the host and switch
energy consumptions are 3.78% and 38.01% less, respec-
tively. The total migration number is 32.26% less, the sum of
total migration time of each monitoring interval is 73.42%
less, the total downtime is 49.85% less than the LR-MMT
algorithm. The performance improvements in total migra-
tion time also result in fewer workload timeouts and CPU
resource shortages. For VM processing, the average CPU
server time is 92.70% less when there is no timeout mecha-
nism. With a timeout mechanism, CAMIG also reduces the
workload timeout by 14.30% compared to the LR-MMT.

As the sum of total migration time and total migration
time of each monitoring interval shown in Table 4 and
Fig. 13, within the 24 hours experiment, the performance of
CAMIG in multiple migration scheduling is largely better
than the LR-MMT. A shorter total migration time during
each monitoring interval means a quicker state convergence
for minimizing the over-utilization period and maximizing
the energy-saving through VM consolidation for under-uti-
lizing hosts. In other words, minimizing the dependencies
among multiple migrations is not only critical for the migra-
tion scheduling, but also for the dynamic resource manage-
ment that provides the migration list.

During the experiments, we find out that there are relatively
large equivalent destination candidates in terms of energy sav-
ing. Therefore, by exploring the concurrency score among these
candidates, we can minimize the resource dependencies
among the migrations. As shown in Fig. 12, there are more

migrations in CAMIG from 1200s to 3600s than LR-MMT. It is
because in LR-MMT once the candidate is used it will be
excluded from the remaining destinations. However, by choos-
ing equivalent hosts during the destination selection, CAMIG
algorithm enables more available destinations for VMs which
need to be migrated from both under and over-utilized hosts.
Thus, CAMIG algorithm actually produces fewer migrations
in the remaining monitor intervals. It also illustrates that in
some cases even the total migration number of CAMIG is
larger, the totalmigration time ismuch smaller due to themini-
mum dependency among the migrations. Fig. 13 shows that,
under certain circumstances (the peak migration time at 20000
second), even if there is a small number of migration tasks, the
total migration time is still very large. Due to the nature of the
consolidation algorithm, there are many migration tasks shar-
ing the same destination or source hosts. Therefore, in tradi-
tional architectures, such as FatTree or even the dedicated
migration network, it is inevitable that the convergence ofmul-
tiple migrations is slower. As a result, the performance of mul-
tiple migration scheduling may be limited by this nature of
resource competition among the consolidatingVMmigrations.

In summary, the evaluation demonstrates that, CAMIG
can efficiently minimize the resource dependency among
multiple migration tasks and achieve the objective of
dynamic resource management in the long run. Thus, it also
improves the performance of dynamic resource manage-
ment algorithms in terms of QoS and energy consumption.

7 CONCLUSION

To the best of our knowledge, we are the first to consider the
problem of minimizing the resource dependency of migration
requests in dynamic resource management. We formally
established a MIP model for the problem and proposed
generic concurrency-aware migration selection algorithm
(CAMIG). We conducted experiments to compare our pro-
posed algorithms with existing dynamic resource manage-
ment policies in load balancing and energy-saving scenarios
by using both random synthetic setup and real trace data.
Without changing the framework of existing policies, the
results indicate that CAMIG can largely improve the perfor-
mance of multiple migrations by up to 91.90%while achieving
the target of dynamic resource management efficiently with
near-linear computation growth in practice. In the long-term
experiments, it can also reduce the total migration number,
service downtime and management target in the host and
switch energy consumptions.
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