
J Supercomput (2018) 74:615–636
https://doi.org/10.1007/s11227-017-2151-2

Rethinking elastic online scheduling of big data
streaming applications over high-velocity continuous
data streams

Dawei Sun1,2 · Hongbin Yan1 · Shang Gao3 ·
Xunyun Liu2 · Rajkumar Buyya2

Published online: 27 September 2017
© Springer Science+Business Media, LLC 2017

Abstract Online scheduling plays a key role for big data streaming applications in a
big data stream computing environment, as the arrival rate of high-velocity continu-
ous data stream might fluctuate over time. In this paper, an elastic online scheduling
framework for big data streaming applications (E-Stream) is proposed, exhibiting the
following features. (1) Profile mathematical relationships between system response
time, multiple application fairness, and online features of high-velocity continuous
stream. (2) Scale out or scale in a data stream graph by quantifying computation and
communication cost, and the vertex semantics for arrival rate of data stream, and adjust
the degree of parallelism of vertices in the graph. Subgraph is further constructed to
minimize data dependencies among the subgraphs. (3) Elastically schedule a graph by
a priority-based earliest finish time first online scheduling strategy, and schedule mul-

B Dawei Sun
sundaweicn@cugb.edu.cn

Hongbin Yan
yanhongbin@cugb.edu.cn

Shang Gao
shang.gao@deakin.edu.au

Xunyun Liu
xunyunliu@gmail.com

Rajkumar Buyya
rbuyya@unimelb.edu.au

1 School of Information Engineering, China University of Geosciences, Beijing 100083,
People’s Republic of China

2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and
Information Systems, The University of Melbourne, Parkville, Australia

3 School of Information Technology, Deakin University, Burwood, VIC 3216, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2151-2&domain=pdf
http://orcid.org/0000-0003-3137-6257


616 D. Sun et al.

tiple graphs by amax–min fairness strategy. (4) Evaluate the low system response time
and acceptable applications fairness objectives in a real-world big data stream com-
puting environment. Experimental results conclusively demonstrate that the proposed
E-Stream provides better system response time and applications fairness compared to
the existing Storm framework.

Keywords Elastic scheduling · Data stream graph · Streaming application ·
High-velocity stream · Big data computing

1 Introduction

In big data era, big data stream computing helps organizations spot opportunities and
risks from real-time big data. It can be employed in many different application sce-
narios, such as social networks, trading, emergency response, fraud detection, system
monitoring, and smart cities. More than 30000 gigabytes of data are created every
second, and the rate is accelerating [1]. Big data stream has some distinctive charac-
teristics [2]. A big data stream computing system doesn’t rely on high-volume storage
to achieve extremely low-latency velocities. Nearly all data in a big data environment
streamed. Stream computing has appeared to solve the dilemma of big data computing
by processing data online within real-time constraints. It makes the research on stream
computing models a new trend for high-throughput computing in big data era, with
both opportunities and challenges [3,4].

In a big data streamcomputing environment, each application is commonlymodeled
as a set of subtasks interconnected via data dependencies, described by a corresponding
DAG [2,5]. (Directed acyclic graph, data stream graph, graph, DAG, and application
are interchangeably used thereafter in this paper.) Each DAG is submitted to a big
data stream computing platform and is scheduled to one or many computing nodes
in data center. A schedule is a process of scheduling inter-dependent subtasks onto
available computing nodes so that a DAG is able to complete its execution within
specified constraints such as throughput and deadline. All the submitted applications
are running continuously on the big data stream computing platform. Each application
processes one or many continuous data streams. Arrival rates of data streams fluctuate
over time in an unpredictable manner.

To effectively use resources, a fundamental requirement is elasticity. Themajority of
the state-of-the-art solutions [6,7] do not provide a proper elastic online scheduler that
knows how to coordinate the dynamical allocation and release of resources according
to current data stream for multiple applications. Previous work in this area focused
mostly on the static scheduling. The reason behind this is that the volume of data stream
is not so big, and the magnitude of dynamically changing data steam is not so high.
Many scheduling strategies provide an efficient scheduling in static stream computing
environments. However, they require permanent peak-load resource provisioning to
remain low latency in face of varying and busty data stream in big data era, and may
cause poor resources utilization and instability of the system as a whole. In this sense,
an elastic online scheduling is always needed to avoid wasting resources or failing in
delivering correct results on time.

123



Rethinking elastic online scheduling of big data… 617

An elastic runtime scaling strategy should be able to determine when and how to
scale and account for data stream fluctuating with time, and to schedule resources
elastically according to the current arrival rate of stream. To achieve that goal, we
need firstly obtain a clear picture of the changed status of a graph of streaming appli-
cation and then decide how to optimize it and which vertices of the graph needed to
be online rescheduled. More importantly, to achieve the scheduling fairness of mul-
tiple applications [8,9]. Currently, most of the existing research works have focused
on application scheduling. They have not considered requirements of multiple appli-
cation scheduling and online features of high-velocity continuous streams, nor have
they sufficiently investigated how to minimize system response time and guarantee
applications fairness, and to deal with high performance and response time trade-
off efficiently and effectively [10,11]. This creates the need for investigation on an
elastic online scheduling framework over high-velocity continuous data streams. To
overcome this limitation, we propose an elastic online scheduling framework for big
data streaming applications (E-Stream). It minimizes system response time, guaran-
tees application fairness, and achieves high elasticity in a big data stream computing
environment.

1.1 Observations

It is the users’ responsibility to design the data stream graph in order to run a streaming
application in Storm platform. However, most of the users do not possess the expertise
of designing a data stream graph that reasonability reflects the performance require-
ment and resource consumption of the application. Key parameters such as operator
parallelism and task allocation are hard to determine and optimize in an online environ-
ment where the remaining resources and rates of data stream are constantly changing
over time. Besides, users have limited knowledge about the runtime behavior of the
application prior to the submission; therefore, the data stream graph statically designed
at compile time may eventually lead to resource over-utilization or underutilization
without delivering satisfactory performance.

However, there are few techniques available in the middleware level to optimize a
submitted application. When a data stream graph is submitted, its structure is detected
and optimized by the following strategies: vertex separation, fusion, and replicate. If
the load calculation of a vertex is significantly higher than that of other vertices, it
normally indicates that it is difficult to assign appropriate resources to this vertex. If this
is the case, this vertex is separated into two or more vertices. When the traffic between
two directly connected vertices is obviously greater than that of other communication
links, it means that the communication delay of this line will be greater than other
links, and two vertices are then fused into one vertex, to eliminate communication
delay of this link. In running phase, the structure of data stream graph is adjusted
through vertex replication or elimination. When the input rate of data stream becomes
higher, it means that latency of some critical vertices increases. One ormore vertices of
a group of critical vertices are replicated. When the input rate of data stream becomes
lower, it means that latency of some critical vertices decreases, and some resource can

123



618 D. Sun et al.

be released. One or more vertices of a group of critical vertices are eliminated given
that those critical vertices have more than one replicas.

In an online scheduling environment, optimizing the structure of data stream graph
is always required. Multiple applications are sharing computing nodes in a data center
so that scheduling fairness needs to be guaranteed.

1.2 Key contributions

Our contributions made in this paper are summarized as follows:

1. Formal definitions of data stream graph, optimizing the structure of a data stream
graph by quantifying and adjusting the degree of parallelism of vertices in the
graph.

2. Subgraph is further constructed to minimize data dependencies among the sub-
graphs.

3. Data stream graph is scheduledwith a priority-based earliest finish time first elastic
online scheduling strategy to minimize system response time.

4. Multiple graphs are scheduled with a max–min fairness-based multiple DAGs
scheduling strategy to guarantee fairness subject to the constraint of response
time.

5. Prototype implementation and performance evaluation of the proposed E-Stream,
which makes trade-off between low system response time and acceptable applica-
tions fairness objectives efficiently and effectively.

1.3 Paper organization

The rest of this paper is organized as follows: In Sect. 2, the related work on workflow
scheduling in distributed systems and application scheduling on Storm platform are
reviewed. Section 3 presents the data stream graph model, multiple user model, data
center model, and multiple data stream graph scheduling model. Section 4 focuses
on the computation and communication cost, vertex semantics, instance of vertices,
subgraph construction, single DAG scheduling, and multiple DAG scheduling in the
proposed E-Stream framework. Section 5 provides the experimental environment,
parameter setup, and performance evaluation of E-Stream. Finally, conclusions and
future work are given in Sect. 6.

2 Related work

In this section, two broad categories of related work are presented: workflow schedul-
ing in distributed systems and application scheduling on Storm platform.

2.1 Workflow scheduling in distributed systems

Workflow scheduling problem in distributed systems is scheduling the dependent ver-
tices ofworkflowon the available computing nodes of the distributed systems to satisfy

123



Rethinking elastic online scheduling of big data… 619

the user’s specified SLAs constraints such as deadline. Finding an optimal schedule
for precedence constraint-based directed acyclic graph is proved to be NP-hard. It has
been studied extensively over the years and will continue to be the focus of research
due to its theoretical significance and practical importance.

In [12], a cloud-aware scheduling system is designed. The system has two subsys-
tems: A subsystem will separate a graph into multi subgraphs and another subsystem
will allocate those subgraphs to a cluster according to load balancing strategy.

In [13], an analytical cost model is constructed. The workflow scheduling problem
is formulated as an optimization problem. A recursive critical path-based workflow
scheduling is proposed, a rigorous workflow analysis is designed, and a layer-oriented
programming strategy is developed.

In [14], a dynamic workflow scheduling strategy is proposed. The strategy focused
on scheduling resources for precedence constraint tasks to a data center, and the dead-
line is one of the major considering factors.

In [15], a budget-constrained allocation approach is proposed. The approach can
guarantee the cost in the specified budget and minimizes the deadline of workflow.

In [16], an integrated solution for workflow scheduling is proposed. The workflow
scheduling problem is formulated. The integrated solution tries to minimize the end-
to-end delay of workflow.

To summarize, the aforementioned solutions provide a valuable insight into the
challenges and potential solutions for application scheduling in big data stream com-
puting environments. However, in big data era, novel approaches that address the
particular challenges and opportunities of these technologies need to be developed,
and some characteristics specific to big data stream computing environments need to
be considered when developing online scheduling strategies.

2.2 Application scheduling on Storm platform

In big data era, Storm is the most popular big data stream computing platform both in
academia and industry. On Storm platform, the round-robin scheduling is employed.
It is simplistic and unintelligent, in which many of the basic factors are not considered,
such as throughput performance, resource availability, or resource demands, and avail-
ability. Some works have been done to improve the application scheduling strategy on
Storm platform.

In [1], an adaptive scheduling approach for Stormplatform is proposed. The transfer
rate and traffic pattern of data stream are considered in the approach. The number of
required resources can be obtained by the proposed approach and can also be adaptively
refreshed.

In [7], a dynamic resource scheduling strategy for cloud-based data stream system
is proposed. It includes an accurate performance model and can process application
topologies.

In [8], a resource-aware scheduling mechanism is proposed in Storm platform and
to maximize resource utilization while minimizing network latency. Hard constraints
and soft constraints are considered in the mechanism.

123



620 D. Sun et al.

In [17], a stream data computing strategy is designed for Storm platform. The
traffic-aware scheduling approach can minimize inter-node and inter-process traffic.
The fine-grained control approach can achieve improved system performance.

In [18], an online scheduling strategy for Storm platform is proposed. The topology
structure is analyzed in the offline environment, and the performance monitoring is
employed in the online environment, and is used in the rescheduling stage.

In [19], an elastic scheduling framework named CE-Storm is designed. The frame-
work can scale out and scale in of continuous query operators. Data provider can also
design the specifically confidentiality policies.

In [20], a GPU-enabled parallel system is proposed for Storm platform. The system
exposes GPUs to Storm applications.

In [21], a set of improvements to a distributed stream computational model is
provided. The extensions of Storm platform are designed.

Additionally, our past work [2] focused on masking failures of computing nodes
and communication links in streaming computing environments, and we proposed
a fault-tolerant framework for streaming computing platform to improve the system
reliability. In this paper, we focus on the fairness of multiple graphs scheduling in
streaming computing environments. Another past work [25] of our group focused on
improving system stability in streaming computing environments, and we proposed a
stable online scheduling strategy for forever online applications. In this paper, however,
our primary goal is not stability but elasticity. We propose an elastic online schedul-
ing framework for multiple online applications, which minimizes system response
time, guarantees application fairness, and achieves high elasticity in big data stream
computing environments.

To summarize, current application scheduling on Storm platform is limited to one or
other aspects. Up to now, most of the research required permanent peak-load resource
provisioning to maintain low latency in face of varying and busty data streams, which
may cause not only poor resources utilization but also instability of the system as a
whole. In this sense, an elastic online scheduling for big data streaming applications
is always needed. It is necessary to have an elastic online scheduler, to scale out or
scale in the application to avoid wasting resources or failing to deliver correct results
on time.

3 Problem statement

To precisely reflect elastic online scheduling problem, we present the data stream
graph model, the multiple user model, the data center model, and the multiple data
stream graph scheduling model.

3.1 Data stream graph model

Abig data stream application is usually described by a data stream graphG, composed
of vertices set and directed edges set. It has a logical structure and specific function,
and denoted as G = (V (G) , E (G)), where V (G) = {v1, v2, . . . , vn} is a finite set
of n vertices. E (G) = {

e1,2, e1,3, . . . , en−i,n
} ⊂ V (G) × V (G) is a finite set of

123



Rethinking elastic online scheduling of big data… 621

directed edges. The logical structure of a data stream graph G is usually described by
DAG [22,23]. Each big data stream application has a deadline associated with it. A
deadline is defined as time limit for the execution of the application [24].

ThemakespanM ofG is the total elapsed time required to executeG. For simplicity,
the makespan M can be set to a value equal to the early finish time EFTve of the end
vertex ve and is also equal to the latest finish time LFTve of the end vertex ve, as
shown in (1); more details can be found in [25].

M = EFTve = LFTve . (1)

3.2 Multiple user model

Elastic online application scheduling system typically consists of multiple users
[25]. Let U = {u1, u2, . . . , um} be a user set composed of m users, Gs =
{Gs1,Gs2, . . . ,Gsm} be a set of data stream graphs of the user set U . For simplicity,
it is assumed that a user always has only one application (described by a data stream
graph) at any time.

Multiple users share resource in a data center. For each user, the available resource
with elastic strategy is always needed. For all users, fair resource allocation is always
needed.

3.3 Data center model

Adata center (DC) is usually described as an undirected graph, composed of a comput-
ing node set and undirected edge set. It has a physical structure and specific functions,
as shown in Fig. 1; more details of data center DC can be found in [25].

3.4 Multiple data stream graph scheduling model

In an online scheduling environment,we focus onfinding an elastic scheduling strategy
to optimize the execution of multiple data stream graphs on a set of shared computing
nodes, and maximize the system fairness with makespan guaranteed.

cn3cn2cn1

cn6cn5cn4

cnkcnk-2cnk-4

Fig. 1 A data center

123



622 D. Sun et al.

A fair multiple DAG scheduling strategy mean that resources allocation is the same
with that in non-shared allocation environment [24,26,27].

For a DAG gi , total allocated resources Targi (tk) in [0, tk] are the accumulated
resources, as shown in (2).

Targi (tk) =
∫ tk

0
argi (t) dt, (2)

where argi (t) is the currently allocated resources for DAG gi at time t .
The total needed allocated resources Tnrgi (tk) in [0, tk] is the accumulated

resources, as shown in (3).

Tnrgi (tk) =
∫ tk

0
nrgi (t) dt, (3)

where nrgi (t) is the currently needed resources for DAG gi at time t .
The fairness degree f dgi (tk) for DAG gi at time tk is defined in (4).

f dgi (tk) = Targi (tk)

Tnrgi (tk)
=

∫ tk
0 argi (t) dt

∫ tk
0 nrgi (t) dt

. (4)

As total actual allocated resources Targi (tk) are always no more than total needed
resources Tnrgi (tk), f dgi (tk) ∈ [0, 1]. If f dgi (tk) = 1, it implies the absolute
resource fairness for DAG gi at time tk , and all the needed resources are allocated. If
f dgi (tk) = 0, it implies the absolute resource unfairness for DAG gi at time tk , and
none of the needed resources is allocated. The greater the fairness degree f dgi (tk) for
DAG gi at time tk , the more fairness the share resources in data center.

For all n DAGs, fairness degree Fdng (tk) for n DAGs at time tk is the average of
all n DAGs, is defined in (5).

Fdng (tk) = 1

n

n∑

i=1

f dgi (tk), f dgi (tk) ∈ [0, 1] , (5)

For a good fairness strategy, it should be able to maximize Fdng (tk). The proposed
data stream graph scheduling model is defined by Definition 1.

Definition 1 Data stream graph scheduling model. In a big data stream comput-
ing system, let the data stream graph scheduling model Gm be represented by a
four-tuple Gm = (U, DC, O f,�), where U = {u1, u2, . . . , um} is a user set com-
posed of m users, and each user may request services independently. Let DC =
{cn1, cn2, . . . , cnn} be a data center composed of n computing nodes, which are run-
ning on virtual machines or physical machines. For each data stream graph, Of is an
objective function to schedule each data stream graph. It is defined according to (6),
and� is an algorithm which implements optimal strategies to minimize the makespan
with guaranteed system fairness.

123



Rethinking elastic online scheduling of big data… 623

O f
(
avg (m (G)) , Fdng (tk)

) = min
(
avg (m (G))

∣∣Fdng (tk)
)
,

s.t. avg (m (G)) ≤ δ, Fdng (tk) ∈ [0, 1] .
(6)

4 E-Stream overview

In order to provide a bird’s-eye view of the elastic online scheduling framework E-
Stream, in this section,we discuss the overall structure of the E-Stream,which includes
computation and communication cost, vertex semantics, instance of vertices, subgraph
construction, single DAG scheduling, and multiple DAG scheduling.

4.1 Computation and communication cost

Computation cost [28] cvi ,cn j is the time required to run vertex vi on computing node
cn j and is related to the instructions number ninstr,vi of the tasks in vertex vi and
processing ability pcn j of computing note cn j .

Communication cost [29] cei, j of directed edge ei, j is the time required to transmit
data tuple from vertex vi to v j and is related to the data output dvi of vertex vi ,
bandwidth bei, j of the directed edge ei, j . Specifically, if vi and v j run on the same
computing node, then cei, j = 0.

We refer to reference [25] for more detailed discussion on the computation and
communication cost.

4.2 Vertex semantics

The semantic of vertex vi [30,31] in data stream graph G indicates relationships
between input stream Ivi and output stream Ovi of vertex vi , which is Ovi = Fvi

(
Ivi

)
.

The semantic of vertex vi can be further classified into 4 types, as shown in Fig. 2.

(1) 1:1 type
In the 1:1 type, as shown in Fig. 2a, there are one input stream I and one output

stream O of vertex vi , irvi is the rate of input stream I , orvi is the rate of output
stream O . irvi and orvi are related to time complex degree of the tasks in vertex vi and
processing ability pcn j of the computing node cn j , which are constants. For simplicity,
the relationship of irvi and orvi can be described as (7).

orvi = αI · irvi + βI , αI , βI ∈ (0,+∞), (7)

where αI , βI are the scaling factors describing the scaling out or scaling in of irvi
and orvi , determined by the function of vertex vi , and available computing power of
computer node running vertex vi .

(2) n:1 type
In the n:1 type, as shown in Fig. 2b, there are n input streams Ivi ,1, Ivi ,2, . . . , Ivi ,n ,

and one output stream O of vertex vi . irvi ,1 , irvi ,2, . . . , irvi ,n are the rates of input
streams Ivi ,1, Ivi ,2, . . . , Ivi ,n , respectively. orvi is the rate of output stream O . The
relationship between irvi ,1 , irvi ,2, . . . , irvi ,n and orvi can be described as (8).

123



624 D. Sun et al.

viI O

1:1

vi O

(b) n:1

viI

1:m

vi

(d) 

(a) 

(c) n:m

Fig. 2 Vertex semantics

orvi =
n∑

k=1

(
αIk · irvi ,k + βIk

)
, αIk , βIk ∈ (0,+∞) , (8)

where αIk , βIk , k ∈ [1, n] are the scaling factors describing the scaling out or scaling
in of irvi ,k and orvi .

(3) 1:m type
In the 1:m type, as shown in Fig. 2c, there are one input stream I and m out-

put streams Ovi ,1, Ovi ,2, . . . , Ovi ,m of vertex vi . irvi is the rate of input stream
I , orvi ,1, orvi ,2, . . . , orvi ,m are the rates of output streams Ovi ,1, Ovi ,2, . . . , Ovi ,m ,
respectively. The relationship between irvi and orvi ,1, orvi ,2, . . . , orvi ,m can be
described as (9).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

orvi ,1 = αI1 · irvi + βI1 , αI1 , βI1 ∈ (0,+∞) ,

orvi ,2 = αI2 · irvi + βI2 , αI2 , βI2 ∈ (0,+∞) ,
...

orvi ,m = αIm · irvi + βIm , αIm , βIm ∈ (0,+∞) ,

(9)

where αI j , βI j , j ∈ [1,m] are the scaling factors describing the scaling out or scaling
in of irvi and orvi , j .

(4) n:m type
In the n:m type, as shown in Fig. 2d, there are n input streams Ivi ,1, Ivi ,2, . . . , Ivi ,n

and m output streams Ovi ,1, Ovi ,2, . . . , Ovi ,m of vertex vi . irvi ,1 , irvi ,2, . . . , irvi ,n are
the rates of input streams Ivi ,1, Ivi ,2, . . . , Ivi ,n , respectively, orvi ,1, orvi ,2, . . . , orvi ,m
are the rates of output streams Ovi ,1, Ovi ,2, . . . , Ovi ,m , respectively. The relationship
between irvi ,1 , irvi ,2, . . . , irvi ,n and orvi ,1, orvi ,2, . . . , orvi ,m can be described as (10).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

orvi ,1 = ∑n
k=1

(
αIk,1 · irvi ,k + βIk,1

)
, αIk,1 , βIk,1 ∈ (0,+∞) ,

orvi ,2 = ∑n
k=1

(
αIk,2 · irvi ,k + βIk,2

)
, αIk,2 , βIk,2 ∈ (0,+∞) ,

...

orvi ,m = ∑n
k=1

(
αIk,m · irvi ,k + βIk,m

)
, αIk,m , βIk,m ∈ (0,+∞) ,

(10)

123



Rethinking elastic online scheduling of big data… 625

where αIk, j , βIk, j , k ∈ [1, n] , j ∈ [1,m] are the scaling factors describing the scaling
out or scaling in of irvi ,k and orvi , j .

Theorem 1 In a big data stream computing environment, rate of data stream input to
computing platform is r . For a vertex vn in data stream graph G, the output data rate
orvn of vertex vn has a linear relationship with the input data rate r .

Proof For a path from vertex v1 to vertex vn ,

orvn = αn · irvn + βn .

If irvi is the input data rate of vertex vi , orvi−1 is the output data rate of vertex vi−1
on that path from vertex v1 to vertex vn , ωi,i−1 is weight of data stream from vertex
vi−1 to vertex vi on that path from vertex v1 to vertex vn .

That is,

irvi = ωi,i−1 · orvi−1 .

So,

orvn = αn · irvn + βn

= αn · (
ωn−1,n · orvn−1

) + βn

= αn ·
(

ωn−1,n ·
n∏

k=2

(
αk−1 · irvk−1 + βk−1

)
)

+ βn

=
n∏

k=1

(αk) ·
n∏

k=2

(
ωk−1,k

) · irv1 +
n∑

h=2

(
n∏

k=h

(αk) ·
n∏

k=h

(
ωk−1,k

) · βh−1

)

+ βn .

If there are m paths from vertex v1 to vertex vn in data stream graph G, then

orvn = αn · irvn + βn = αn ·
⎛

⎝
idvi∑

k=1

ωk,i · orvk
⎞

⎠ + βn

=
m∑

p=1

(
n∏

k=1

(αk) ·
n∏

k=2

(
ωk−1,k

)
)

· irv1

+
m∑

p=1

(
n∑

h=2

(
n∏

k=h

(αk) ·
n∏

k=h

(
ωk−1,k

) · βh−1

)

+ βn

)

.

If,

α =
m∑

p=1

(
n∏

k=1

(αk) ·
n∏

k=2

(
ωk−1,k

)
)

.

123



626 D. Sun et al.

β =
m∑

p=1

(
n∑

h=2

(
n∏

k=h

(αk) ·
n∏

k=h

(
ωk−1,k

) · βh−1

)

+ βn

)

,

then

orvn = α · irv1 + β.

As irv1 = r ,

orvn = α · r + β.

��

Similarly, the relationship between end vertex ve of data stream graph G and the input
data rate r is also linear.

4.3 Instance of vertices

Replication of vertex in a data stream graph can improve throughput. Each vertex vi
can create n different independent instances vi j , j ∈ (1, 2, . . . , n). Instances run on
different machines and work in parallel.

The number of instances of each vertex can be determined by the number of instruc-
tions that each vertex has. More details of our vertex instance model can be found in
[25].

4.4 Subgraph construction

In a DAG, the communication cost between some vertices may be significantly longer
than that of other vertices and greatly increases the response time of the DAG. In order
to reduce such kind of communication cost, a subgraph is constructed on the related
vertices. A subgraph is defined as Definition 2.

Definition 2 (Subgraph) A subgraph sub-G of data stream graph G is the subgraph
consisting of a subset of the vertices with the edges in between. For any vertices vi
and v j in the subgraph sub-G and any vertex v in data stream graph G, v must also
be in the sub-G if v is on a directed path from vi to v j , that is, ∀vi , v j ∈ V (sub-G),
∀v ∈ V (G), if v ∈ V

(
p

(
vi , v j

))
, then v ∈ V (p (sub-G)).

A subgraph sub-G can be substituted by a logically equivalent vertex. Construction
of a subgraph can reduce the communication cost between related vertices, and reduce
the response time of the DAG. A subgraph will be treated as a “vertex” in the DAG
scheduling phase.

123



Rethinking elastic online scheduling of big data… 627

For a directed edge ei, j from vertex vi to v j , the communication-to-computation
ratio ccrvi ,v j of vertex vi and v j can be calculated by (11).

ccrvi ,v j = avg
(
cei, j

)

avg
(
cvi

) + avg
(
cv j

) . (11)

where avg
(
cvi

)
is the average computation cost of vertex vi and avg

(
cei, j

)
is the

average communication cost from vertex vi to v j .
If the communication-to-computation ratio ccrvi ,v j of vertex vi and v j meets con-

dition (12), a subgraph needs to be constructed.

ccrvi ,v j > δ, (12)

where δ is the adjust parameter, which can be set according to needs of different stream
computing environments. For example, δ can be set as 1, whichmeans the computation
cost of vertex vi and v j equal to the communication cost of directed edge ei, j .

4.5 Single DAG scheduling

For a DAG, a priority-based earliest finish time first scheduling strategy is employed
[32].

In a DAG, each vertex can be set with a priority according to its location in the
DAG. The priority of vertex vi is defined by (13).

p (vi ) = max∀vk∈setchildre(vi )
{
p (vk) + cei,k

} + avg
(
cvi

)
, (13)

where vk is one of the children of vertex vi , setchildren (vi ) is children set of vertex vi ,
and avg

(
cvi

)
is the average computation cost of vertex vi .

The priority of the end vertex ve is defined by (14).

p (ve) = avg
(
cve

)
(14)

The priority of a vertex determines the order in which the resources are allocated. The
source vertex vs always has the highest priority among all vertices in the DAG, and
it is always first scheduled to a computing node. At the beginning, all vertices in the
DAG are added to a non-schedule vertices set in topological order. When a vertex is
scheduled to a node, the vertex is removed from the non-schedule vertices set, and
added to schedule set. A vertex is always scheduled to a computing node on which
the earliest completion time is guaranteed.

The earliest finish time EFTvs ,cn j of vertex vi running on computing node cn j is
shown in (15).

EFTvs ,cn j = t idlevi ,cn j
+ cvi ,cn j . (15)

The earliest finish time EFTvs is the finish time of source vertex vs on computing node
cn pbest with minimum total time of available time and computing time, as shown in

123



628 D. Sun et al.

(16).

EFTvs ,cn pbest
= min

cn j∈ava(vi )

{
t idlevi ,cn j

+ cvi ,cn j

}
. (16)

where ava (vi ) is the set of available computing nodes for vertex vi .
For other vertices in G, to calculate ESTvi ,cn j , all immediate predecessor vertices

of vi must have been scheduled and added to the schedule set.

ESTvi ,cn j = max

{
t idlevi ,cn j

, max
vpred∈pred(vi )

{
EFTvpred + cepred,i

}}
, (17)

where t idlevi ,cn j
is the earliest time at which computing node cn j is ready for vi use, and

pred (vi ) is the set of immediate predecessor vertices of vertex vi .
The earliest finish time EFTvi ,cn j of vertex vi running on computing node cn j can

be calculated by (18).

EFTvi ,cn j = ESTvi ,cn j + cvi ,cn j . (18)

The earliest finish time EFTvi is the finish time of vertex vi on the computing node
cn pbest with minimum total time of available time and computing time, as shown in
(19).

EFTvi ,cn pbest
= min

cn j∈ava(vi )

{
EFTvi ,cn j

}
, (19)

where ava (vi ) is the set of available computing nodes for vertex vi .
The following three rules are also employed in scheduling a DAG.

Rule 1: each instance of a vertex is scheduled to a different computing node.
If a vertex hasmultiple instances, each instance of the vertex is scheduled to a differ-

ent computing node, to improve the efficiency of node usages. If two or more instances
are schedule to the same node, it is not only unhelpful to improve the efficiency, but
also increases the workload of the node.

Rule 2: the computing node with the maximum available computing power is always
employed.

If a vertex can be scheduled to multiple nodes, given the same earliest finish time,
the node with the maximum available computing power is always employed. As the
available computing power of a node keeps changing, the most remaining available
“powerful” node is not always the same. This rule helps achieve a fairer use of all
available resources.

Rule 3: minimize number of vertices in the elastic online rescheduling stage.
When aDAG is scheduled on computing platform, it is running forever. If the arrival

rate of data stream or the number of available computing nodes is changed, the DAG
is to be rescheduled during this stage, and the scheduling strategy is the same as the
strategy for single DAG.However, the current allocation status is to be considered. The
vertex to be scheduled on the same node will not be further rescheduled to minimize
the number of vertices to be rescheduled.

123



Rethinking elastic online scheduling of big data… 629

4.6 Multiple DAG scheduling

For a n-DAGs scheduling scenario, amax–min fairness-basedmultipleDAGs schedul-
ing strategy is employed [33] and described as Algorithm 1.

The input of this algorithm is multiple DAGs, currently available capacity matrix
Cvn×m of computing nodes, and input rate of data stream. The output is max–min
fairness-based multiple DAGs scheduling sequence with makespan guaranteed. Step
7 to step 20 monitor those DAGs requiring more resources and reschedule all those
DAGs by priority-based earliest finish time first strategy. The makespan is maximized
with system fairness degree guaranteed.

123



630 D. Sun et al.

5 Performance evaluation

To evaluate the performance of the proposed E-Stream system, we created the exper-
imental environment and conducted experiments as discussed below.

5.1 Experimental environment and parameter setup

Storm platform [13,17,34] is one of the most popular big data stream computing
platforms in industry today. It is a parallel, distributed, and fault-tolerant system,
designed to provide a platform that supports real-time data stream computing on
clusters of horizontally scalable commodity machines.

The proposed E-Stream system is developed based on Storm 0.10.2 and installed
on top of Linux Ubuntu Server 13.04. Real data experiments are performed on a
computing cluster located at computer architecture laboratory in China University
of Geosciences, Beijing. The computing cluster consists of 35 machines, with one
designated asmaster node, running StormNimbus, two designated as Zookeeper node,
and the rest 32 machines working as worker nodes. Each machine runs Linux Ubuntu
Server 13.04 with dual 4-core, Intel Core (TM) i7-4790, 3.6GHz, 4 GB Memory, and
1Gbps network interface cards.

Moreover, an instance graph of TOP_N (see Fig. 3) and an instance graph of Word-
Count (see Fig. 4) are submitted to the data center.

5.2 Performance results

The experimental setting contains two evaluation parameters: the response time RT
and the fairness degree FD.

va1 vb2

vc2

vb3

vb1

va2

vc1

vc3

vd

vb4

Spout

Bolt

Bolt

Bolt

p=2

p=4
p=3

=1p

Fig. 3 Instance graph of TOP_N in Storm

123



Rethinking elastic online scheduling of big data… 631

Spout

Bolt

Bolt

p=2

va1

p=4
p=5

va2

vb1

vb2

vb3

vb4

vc1

vc2

vc3

vc4

vc5

Fig. 4 Instance graph of WordCount in Storm

Fig. 5 Average response time
of instance graph of TOP_N
with different number of DAGs

(1) Response time The response time RT or makespan of a DAG is determined by
the critical path of that DAG. RT can be calculated by EFT of the end vertex ve. It
can also be obtained from Storm UI.

Given that the rate of data stream is stable, with the increase in number of DAGs, the
average response time also increases. As shown in Fig. 5, when the rate of data stream
set at 1000 tuples/s and 2000 tuples/s, the average response times of instance graph of
TOP_N are increasing with the number of DAGs accordingly. However, even when
the number of DAGs of TOP_N is 50, the rate of data stream set at 1000 tuples/s and
2000 tuples/s, the average response time of instance graph of TOP_N is 21.35 ms and
39.32ms, respectively, which is reasonably acceptable in an online stream computing
environment.

123



632 D. Sun et al.

Fig. 6 Average response time
of instance graph of WordCount
with different number of DAGs

Fig. 7 Average response time
of instance graph of TOP_N
with data rates 1000 tuples/s

Given that the rate of data stream is stable, with the increase in number of DAGs, the
response time of DAG also increases. As shown in Fig. 6, when the rate of data stream
set at 1000 tuples/s and 2000 tuples/s, the average response times of instance graph
of WordCount are also increasing with the number of DAGs accordingly. However,
even when the number of DAGs of WordCount is 50, when the rate of data stream
set at 1000 tuples/s and 2000 tuples/s, the average response time of instance graph of
WordCount is 4.35 ms and 6.32ms, respectively, which are reasonably acceptable in
an online stream computing environment.

Given that the rate of data stream is stable, E-Stream has a better average response
time compared with the default, round-robin strategy of Storm platform. As shown in
Fig. 7, with the rate set at 1000 tuples/s, the average response time of instance graph
of TOP_N by E-Stream is greatly shorter than that of the default Storm strategy under
the same situation. The larger the number of DAGs, the higher the improvement in the
average response time by E-Stream.

Given that the rate of data stream is stable, E-Stream also has a better average
response time, compared with the default round-robin strategy on Storm platform.
As shown in Fig. 8, with the rate set at 1000 tuples/s, the average response time of
instance graph of WordCount by E-Stream is greatly shorter than that of the default
Storm strategy under the same situation. The larger the number of DAGs, the higher
the improvement in the average response time by E-Stream.

123



Rethinking elastic online scheduling of big data… 633

Fig. 8 Average response time
of instance graph of WordCount
with data rates 1000 tuples/s

Fig. 9 Average fairness degree
of instance graph of TOP_N
with different number of DAGs

(2) Fairness degree Fairness degree FD reflects fairness of all related DAGs in a
data center. Fairness degree Fdng (tk) for n DAGs at time tk is the average of all n
DAGs, as defined in (5). If Fdng (tk) = 1, it implies the absolute resource fairness for
n DAGs at time tk . If f dgi (tk) = 0, it implies the absolute resource unfairness for n
DAGs at time tk . The greater the fairness degree Fdng (tk) for n DAGs at time tk , the
more fairness the sharing resources in data center.

Given that the rate of data stream is stable, with the increase in number of DAGs,
the fairness degree of all DAGs decreases. As shown in Fig. 9, when the rate of data
stream set at 1000 tuples/s and 2000 tuples/s, the average fairness degree of instance
graph of TOP_N is decreasing with the number of DAGs. However, even when the
number of DAGs of TOP_N is 50, the rate of data stream is 1000 tuples/s and 2000
tuples/s, tk =100s, the average fairness degree of instance graph of TOP_N is 0.83 and
0.79, respectively, which are reasonably acceptable in an online stream computing
environment.

Given that the rate of data stream is stable, E-Stream has a better average fairness
degree, compared with the default round-robin strategy on Storm platform. As shown
in Fig. 10, with the rate set at 1000 tuples/s, the average fairness degree of instance
graph of TOP_NbyE-Stream is greatly better than that of the default strategy by Storm
under the same situation. The larger the number of DAGs, the higher the improvement
in the average fairness degree by E-Stream.

123



634 D. Sun et al.

Fig. 10 Average fairness degree
of instance graph of TOP_N
with data rates 1000 tuples/s

6 Conclusions and future work

Elastic online scheduling over high-velocity continuous data streams is one of the
major obstacles for opening up the new era of big data stream computing. In a big
data stream computing environment, each DAG is submitted to a big data stream
computing platform and scheduled on one or many computing nodes in data center.
All the submitted applications are running continuously. An elastic online scheduling
is always needed to improve resource usage.

An elastic runtime scaling strategy is the key part of elastic online scheduling
framework, which determines when and how to scale, and accounts for data stream
fluctuating with time. A clear picture of the changed status of a graph of streaming
application is firstly obtained. It is then decided how to optimize the graph of applica-
tion and which vertices of the graph need to be online rescheduled. More importantly,
the scheduling fairness of multiple applications is achieved. It is investigated as to
understand how to minimize system response time and guarantee applications fair-
ness.

Our contributions made in this paper are summarized as follows:

1. Formal definitions of data stream graph, optimizing the structure of a data stream
graph by quantifying and adjusting the degree of parallelism of vertices in the
graph.

2. Subgraph is further constructed to minimize data dependencies among them.
3. Elastic scheduling of a graph by a priority-based earliest finish time first strategy

and elastic scheduling of multiple graphs by a max–min fairness-based strategy.
4. Prototype implementation, experimental, and performance evaluation of the pro-

posed E-Stream.

Our future work will be focusing on the following directions:

1. Developing a complete elastic online scheduling framework based on E-Stream
as a part of big data stream computing services to satisfy the low response time
and high application fairness objectives.

2. Deploying the E-Stream on real big data stream computing environments.

123



Rethinking elastic online scheduling of big data… 635

Acknowledgements This work is supported by the National Natural Science Foundation of China under
Grant No. 61602428; the Fundamental Research Funds for the Central Universities under Grant No.
2652015338; and Melbourne-Chindia Cloud Computing (MC3) Research Network. We are grateful to
Prof. Satish Srirama for his comments on improving the paper.

References

1. Eskandari L, Huang Z, Eyers D (2016) P-Scheduler: adaptive hierarchical scheduling in apache storm.
In: Proceedings of the Australasian Computer Science Week Multiconference, ACSW 2016, No. 26.
ACM Press, New York

2. Sun DW, Zhang GY, Wu CW, Li KQ, Zheng WM (2017) Building a fault tolerant framework with
deadline guarantee in big data stream computing environments. J Comput Syst Sci 89:4–23

3. Dayarathna M, Toyotaro S (2013) Automatic optimization of stream programs via source program
operator graph transformations. Distrib Parallel Databases 31(4):543–599

4. Alexandrov A, Salzmann A, Krastev G, Katsifodimos A, Markl V (2016) Emma in Action: declar-
ative dataflows for scalable data analysis. In: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD 2016. ACM Press, New York, pp 2073–2076

5. Convolbo MW, Chou J (2016) Cost-aware DAG scheduling algorithms for minimizing execution cost
on cloud resources. J Supercomput 72(3):985–1012

6. Kanoun K, Tekin C, Atienza D, Shaar M (2016) Big-data streaming applications scheduling based on
staged multi-armed bandits. IEEE Trans Comput 65(12):3591–3605

7. Fu TZJ, Ding J, Ma RTB, Winslett M, Yang Y, Yin Z, Zhang Z (2015) DRS: dynamic resource
scheduling for real-time analytics over fast streams. In: Proceedings of 2015 IEEE 35th International
Conference on Distributed Computing Systems, ICDCS 2015. IEEE Press, New York, pp 411–420

8. Peng B, Hosseini M, Hong Z, Farivar R, Campbell R (2015) R-Storm: resource-aware scheduling in
Storm. In: Proceedings of the 16th Annual Middleware Conference, Middleware 2015. ACM Press,
New York, pp 149–161

9. Choi Y, Chang S, Kim Y, Lee H, Son W, Jin S (2016) Detecting and monitoring game bots based on
large-scale user-behavior log data analysis in multiplayer online games. J Supercomput 72(9):3572–
3587

10. Lohrmann B, Janacik P, Kao O (2015) Elastic stream processing with latency guarantees. In: Proceed-
ings of 2015 IEEE 35th International Conference on Distributed Computing Systems, ICDCS 2015.
IEEE Press, New York, pp 399–410

11. Ahmad SG, Liew CS, RafiqueMM,Munir EU, Khan SU (2014) Data-intensive workflow optimization
based on application task graph partitioning in heterogeneous computing systems. In: Proceedings of
4th IEEE International Conference on Big Data and Cloud Computing, BDCloud 2014. IEEE Press,
New York, pp 129–136

12. Ghafarian T, Javadi B (2015) Cloud-aware data intensive workflow scheduling on volunteer computing
systems. Future Gener Comput Syst 51:87–97

13. GuY,WuCQ (2016) Performance analysis and optimization of distributedworkflows in heterogeneous
network environments. IEEE Trans Comput 65(4):1266–1282

14. Chen TW, Lee YC, Fekete A, Zomay AY (2015) Adaptive multiple-workflow scheduling with task
rearrangement. J Supercomput 71(4):1297–1317

15. ArabnejadH,Barbosa JG (2014)Abudget constrained scheduling algorithm forworkflow applications.
J Grid Comput 12(4):665–679

16. Yun D, Wu CQ, Gu Y (2015) An integrated approach to workflow mapping and task scheduling for
delay minimization in distributed environments. J Parallel Distrib Comput 84:51–64

17. Xu J, Chen Z, Tang J, Su S (2014) T-Storm: traffic-aware online scheduling in Storm. In: Proceedings
of 2014 IEEE 34th Internatoin Conference on Distributed Computing Systems, ICDCS 2014. IEEE
Press, New York, pp 535–544

18. Aniello L, Baldoni R, Querzoni L (2013) Adaptive online scheduling in Storm. In: Proceedings of the
7th ACM International Conference on Distributed Event-Based Systems, DEBS 2013. ACM Press,
New York, pp 207–218

19. Katsipoulakis NR, Thoma C, Gratta EA, Labrinidis A, Lee AJ, Chrysanthis PK (2015) CE-Storm: con-
fidential elastic processing of data streams. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2015. ACM Press, New York, pp 859–864

123



636 D. Sun et al.

20. Chen Z, Xu J, Tang J, Kwiat K, Kamhoua C (2015) G-Storm: GPU-enabled high-throughput online
data processing in Storm. In: Proceedings of the 2015 IEEE International Conference on Big Data,
Big Data 2015. IEEE Press, New York, pp 307–312

21. Basanta-Val P, Fernández-García N, Wellings AJ, Audsley NC (2015) Improving the predictability of
distributed stream processors. Future Gener Comput Syst 52:22–36

22. Verma A, Kaushal S (2015) Cost-time efficient scheduling plan for execution workflows in the cloud.
J Grid Comput 13(4):495–506

23. Gu L, Zeng D, Guo S, Xiang Y, Hu J (2016) A general communication cost optimization framework
for big data stream processing in geo-distributed data centers. IEEE Trans Comput 65(1):19–29

24. Tang S, Lee BS, He B (2017) Fair resource allocation for data-intensive computing in the cloud. IEEE
Trans Serv Comput. doi:10.1109/TSC.2016.2531698

25. Sun DW, Huang R (2016) A stable online scheduling strategy for real-time stream computing over
fluctuating big data streams. IEEE Access 4:8593–8607

26. Hu M, Luo J, Wang Y, Lukasiewycz M, Zeng Z (2014) Holistic scheduling of real-time applications
in time-triggered in-vehicle networks. IEEE Trans Ind Inf 10(3):1817–1828

27. AlkhanakEN,LeeSP,RezaeiR, PariziRM(2016)Cost optimization approaches for scientificworkflow
scheduling in cloud and grid computing: a review, classifications, and open issues. J Syst Softw 113:1–
26

28. HuM, Luo J,WangY, Veeravalli B (2017) Adaptive scheduling of task graphs with dynamic resilience.
IEEE Trans Comput 66(1):17–23

29. Matei Z, Dhruba B, Joydeep SS, Khaled E, Scott S, Ion S (2010) Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling. In: Proceedings of 5th European Conference
on Computer systems, EuroSys 2010. ACM Press, New York, pp 265–278

30. Bala A, Chana I (2015) Intelligent failure prediction models for scientific workflows. Expert Syst Appl
42(3):980–989

31. Zeng L, Veeravalli B, Zomaya AY (2015) An integrated task computation and data management
scheduling strategy for workflow applications in cloud environments. J Netw Comput Appl 50:39–48

32. Shi J, Luo J, Dong F, Zhang J, Zhang J (2016) Elastic resource provisioning for scientific workflow
scheduling in cloud under budget and deadline constraints. Clust Comput 19(1):167–182

33. Zhu Z, Zhang G, LiM, Liu X (2016) Evolutionary multi-objective workflow scheduling in cloud. IEEE
Trans Parallel Distrib Syst 27(5):1344–1357

34. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M,
Donham J, Bhagat N, Mittal S, Ryaboy D (2014) Storm@twitter. In: Proceedings of 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2014. ACM Press, New York,
pp 147–156

123

http://dx.doi.org/10.1109/TSC.2016.2531698

	Rethinking elastic online scheduling of big data streaming applications over high-velocity continuous data streams
	Abstract
	1 Introduction
	1.1 Observations
	1.2 Key contributions
	1.3 Paper organization

	2 Related work
	2.1 Workflow scheduling in distributed systems
	2.2 Application scheduling on Storm platform

	3 Problem statement
	3.1 Data stream graph model
	3.2 Multiple user model
	3.3 Data center model
	3.4 Multiple data stream graph scheduling model

	4 E-Stream overview
	4.1 Computation and communication cost
	4.2 Vertex semantics
	4.3 Instance of vertices
	4.4 Subgraph construction
	4.5 Single DAG scheduling
	4.6 Multiple DAG scheduling

	5 Performance evaluation
	5.1 Experimental environment and parameter setup
	5.2 Performance results

	6 Conclusions and future work
	Acknowledgements
	References




