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Abstract—Large-scale data processing framework like Apache
Spark is becoming more popular to process large amounts of data
either in a local or a cloud deployed cluster. When an application
is deployed in a Spark cluster, all the resources are allocated to
it unless users manually set a limit on the available resources. In
addition, it is not possible to impose any user-specific constraints
and minimize the cost of running applications. In this paper,
we present dSpark, a lightweight, pluggable resource allocation
framework for Apache Spark. In dSpark, we have modelled
the application completion time with respect to the number of
executors and application input/iteration. This model is further
used in our proposed resource allocation model where a deadline-
based, cost-efficient resource allocation scheme can be selected
for any application. As opposed to the existing frameworks that
focus more on modelling the number of VMs to use for an
application, we have modelled both the application cost and
completion time with respect to executors, hence providing a fine-
grained resource allocation scheme. In addition, users do not need
to specify any application types in dSpark. We have evaluated
our proposed framework through extensive experimentation,
which shows significant performance benefits. The application
completion time prediction model has a mean relative error (RE)
less than 7% for different types of applications. Furthermore,
we have shown that our proposed resource allocation model
minimizes the cost of running applications and selects effective
resource allocation schemes under varying user-specific deadlines.

Index Terms—Big Data, Cloud Computing, Apache Spark,
Resource Allocation, Deadline, Cost Minimization

I. INTRODUCTION

Now-a-days, huge amount of data is generated from so-

cial media, mobile devices, IoT and many other emerging

applications. Therefore, data processing and analytics have

become really important in all the major domains, such as

research, business and industry. Apache Spark [1] is one

of the most prominent big data processing platforms. It is

an open source, general purpose, large-scale data processing

framework. It mainly focuses on high speed cluster computing

and provides extensible and interactive analysis through high

level APIs. Spark can perform batch or stream data analytics,

machine learning and graph processing. It can also access

diverse data sources like HDFS [2], HBase [3], Cassandra

[4] etc. and use Resilient Distributed Dataset (RDD) [5] for

data abstraction. Spark runs programs faster than Hadoop-

MapReduce [6] by performing most of the computations in-

memory. In addition, it caches intermediate results in memory

for faster re-processing of data. Spark can run locally in a

single desktop, in a local cluster and on the cloud. It runs on

top of Hadoop Yarn [7], Apache Mesos [8] and the default

standalone cluster manager.

In a Spark cluster, there are one or more worker nodes with

the available resources (CPU cores, memory and disk). In addi-

tion, there is a master node which is responsible for allocating

these resources to the applications. Each application uses the

allocated resources to create executor processes where it can

run tasks in parallel. Resource allocation in a Spark cluster can

be done through the following three mechanisms: (1) Default
Resource Allocation. It is used when the applications are

submitted in a Spark cluster without specifying any resource

allocation details. In this approach, all the applications will run

in a FIFO style and each application consumes all the worker

nodes. Hence, applications run one after another and when

an application is running, it will use up all the worker nodes

to create executors. (2) Static Resource Allocation. When an

application is submitted, the user specifies how many execu-

tors, cores, memory etc. an application can have. Therefore,

resources can be shared among multiple applications from one

or more users. (3) Dynamic Resource Allocation. If this mode

is turned on, applications may release idle executors to give

back some resources to the cluster which can also be taken

back in future if needed.

However, there are three major problems in these resource

allocation mechanisms. First, when a single application is run-

ning in the cluster with the default resource allocation mech-

anism, it will consume all the resources. As a consequence,

resource sharing among applications will be prevented. Sec-

ond, in static resource allocation, the user has to manually set

the amount of resources each application is going to use. Even

with dynamic resource allocation, the user still has to set the

initial amount of resources. As a result, improper allocation of

resources might lead to severe performance issues. Lastly, if a

production cluster has user-specific deadlines, default resource

allocation mechanism may not work since any application

with a strict deadline might have to wait in the FIFO queue.

Furthermore, inappropriate resource allocation in both static

and dynamic resource allocation techniques might affect the

deadlines.



In this paper, we propose a resource allocation framework

for distributed batch-based applications in Apache Spark. In

addition, we propose an application completion time prediction

model which can be built from the application profiles. This

model is further used in the resource allocation model to select

a deadline-based, cost-effective resource allocation scheme.

The main contributions of this work are as follows:

• We design an automatic, light-weight, pluggable dSPark
resource allocation framework for Apache Spark that

works from the master node along with the underlying

cluster manager.

• We propose a resource allocation model where a cost-

effective, deadline-based Resource Allocation Scheme

(RAS) can be found for an application.

• We propose a model that predicts the completion time

of an application based on the number of executors and

properties of the application.

• We develop a Spark Profiler to profile any application

with respect to varying input workloads, iterations, re-

source allocation schemes etc.

• We propose a simple algorithm to generate Resource
Allocation Schemes (RAS) which can be used to deploy

applications in an Apache Spark cluster.

• We implement the framework using the proposed models

and algorithms. In addition, we run comprehensive exper-

iments to show the accuracy and performance benefits of

our proposed models.

The rest of the paper is organized as follows. In section II,

we discuss the background of Apache Spark. In section III,

we describe the existing works related to this paper. In sec-

tion IV, we formulate the resource allocation and application

completion time prediction models. In section V, we illustrate

the architecture of the proposed dSpark framework. In section

VI, we explain the methods we have used to implement

the proposed framework. In section VII, we evaluate the

performance of our proposed models. Section VIII concludes

the paper.

II. BACKGROUND

As compared to the disk-based MapReduce tasks of a

typical Hadoop system, Apache Spark allows most of the

computations to be performed in memory and provides better

performance for some applications such as iterative algo-

rithms. The intermediate results are written to the disk only

when it cannot be fitted into the memory.

Fig. 1 shows a typical Apache Spark cluster. Applications

are submitted through a cluster manager to run in the cluster.

Spark supports Apache Mesos or Hadoop Yarn as cluster man-

agers to allocate resources among applications. In addition,

its own default Standalone cluster manager is also sufficient

to handle a production cluster. All these cluster managers

support both static and dynamic allocation of resources. In

static resource allocation, each application is deployed with a

fixed amount of resources which cannot be changed during the

life-cycle of that application. However, in dynamic resource

allocation, idle resources can be released to the cluster and
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Fig. 1. An Apache Spark Cluster

any other application can use them. These resources can also

be taken back from the cluster in future if needed.

Workers are the physical/compute nodes of an Apache Spark

cluster where one or more application processes can be created

depending on the resource capacity. In cloud deployments, one

or more worker nodes can be created inside each allocated

Virtual Machines (VM). A Spark cluster can have one or more

worker nodes but there is only a single Master node that is

responsible for managing the worker nodes.

Each application in Spark has a SparkContext object in

its main program (also called the Driver Program) which

creates and maintains Executor processes on worker nodes.

An application uses its own set of executors to run tasks

in parallel, in multiple threads and to keep data in memory

and storage. In addition, these executors live for the whole

duration of that application. All the executors of the same

application must be identical in size. Hence, they will have

same amount of resources (CPU cores, memory, disk). There

are two benefits of isolating applications from each other.

First, a driver program can independently schedule its own

tasks in the acquired executors. Second, each worker can have

multiple executors from different applications running in their

own JVM processes.

Spark uses Resilient Distributed Datasets (RDD) to hold

data in a fault tolerant way. Each job/application is divided into

multiple sets of tasks called stages which are inter-dependant.

All these stages form a directed acyclic graph (DAG) and each

stage is executed one after another.

III. RELATED WORK

A vast amount of research has been done in application

performance modelling, resource provisioning and scheduling

in cloud-based systems. Here, we only focus on discussing the

related research works done for big data processing platforms.

Most of the research were done for MapReduce-based big data

frameworks as it was the most popular big data processing

paradigm in the last decade. ARIA [9] was designed for

MapReduce based environments where job profiles of map

and reduce tasks of an application are collected to build job



profiles. A MapReduce performance model is built from the

job profiles which is used to estimate the required resources

for a job completion given its Service Level Objective (dead-

line). In [10], performance modelling of MapReduce jobs

was done in heterogeneous cloud environments. [11] proposed

a resource provisioning framework for MapReduce work-

loads. [12] showed a deadline-based workload management

for MapReduce workloads. [13] predicts the expected perfor-

mance of a big data workload from historical performance

results using Support Vector Machine (SVM). However, these

approaches are not straight forward to apply in Apache Spark

as it is a DAG-based in-memory analytics platform.

[14] evaluated the performance of Apache Spark in

MareNostrum supercomputer to explore its efficiency and ap-

plicability in HPC setup. In addition, they have also developed

a framework called Spark4MN to automate the use of a

Spark cluster in HPC environment. Furthermore, they have

explored the impacts on performance by differernt parameters

like worker size, tasks per core etc. Similar to this work, [15]

also investigated different configuration parameter tuning of

Spark applications. They have identified a set of important

paramemters and provided a trial-and-error based methodology

to tune these paramemters for performance speed-ups. A ma-

chine learning based configuration parameter tuning approach

is proposed in [16]. Their method is composed of binary

classification and multi-classification. As Spark has a huge

parameter space, they have taken a random sample from

the parameter space and generated a parameter list of 500

records for each type of workload. Then real execution data

on these parameter lists is taken to train their models. Their

experimental results show that a Decision Tree (C5.0) provides

good accuracy and performance in diverse workloads.

TABLE I. Related Work

Parameter Related Work dSpark[15] [16] [17] [18] [19] [20]
Framework � � � � � � �

Performance Modelling � � � � � � �

Executor Cost Modelling � � � � � � �

Deadline � � � � � � �

Cost Saving � � � � � � �

Resource Saving � � � � � � �

[17] investigated the problem of resource waste that occurs

while a Spark application runs in all the nodes in a cluster. To

address this problem, they have proposed dynamic partitioning

based solutions that tune the degree of parallelism of Spark

application during execution to reduce resource consumption.

To achive this, they have to trade small amount of running

time. [18] built multiple polynomial regression models on the

application profile data and applied k-fold cross validation

to choose the best model to predict application execution

time with unknown input data set or cluster configuration.

[19] tried to model application performance in DAG-based

in-memory analytics platforms and they have used Apache

Spark to validate their methods. In this work, the execution

times from different stage of an application is collected and

then used to predict the execution time of the application.

TABLE II. Definition of Symbols

Symbol Definition
A a Spark application

E total number of executors

Pvm price (per second) of a VM

Me memory (GB) in each executor

Ce number of cores assigned to each executor

Pe price of one executor

Nw total number of workers in the cluster

Cw total number of cores in each worker

Mw total memory (GB) in each worker

Emax maximum possible executors in the cluster

T completion time of an application

D deadline of an application

I input size or iteration of an application

RAS resource allocation scheme

RASL list of resource allocation schemes

However, these works did not consider cost minimization and

user-specific deadlines. In optEx [20], a deadline oriented cost

optimization model was proposed. However, in optEx, the user

needs to specify the type of the application before deployment.

In all these works related to Spark performance modelling,

they have considered VMs as the unit of resource of an

application and tried to estimate application completion time

with different number of VMs. However, in dSpark, we

have considered executor processes as a unit of resource for

the application. For any size of machine either in local or

cloud deployed cluster, our model is capable of finding more

fine-grained resource allocation schemes. Therefore, multiple

applications will be able to run executor processes in the

same worker node depending on the worker and executor size.

Furthermore, dSpark also utilizes a flexible cost model that can

be customized to integrate user’s own pricing policies. Lastly,

dSpark can provide efficient resource allocation schemes under

varying SLO deadlines. The summary of the comparison

between our work and other closely related works is given

in Table I.

IV. PROBLEM FORMULATION

A. Cost-efficient Resource Allocation Model

An Apache Spark cluster comprising of master and worker

nodes can be deployed on cloud Virtual Machines (VM). For

simplicity of our proposed model, we assume that all the

VMs used as worker nodes are homogeneous. Therefore, each

of the VM will have same amount of CPU cores, memory

and storage disk. To deploy an application in the cluster, a

Resource Allocation Scheme (RAS) needs to be defined. In

each RAS, the total number of executors, CPU cores in each

executor and memory in each executor should be specified.

Our goal is to choose a cost-efficient RAS which ensures

that an application will be completed before the user-specified

deadline.



Suppose, we have an Apache Spark cluster with Nw total

number of worker nodes and one (1) master node. In addition,

all these nodes are created in distinct VMs. As all the workers

are homogeneous, each worker has Cw CPU cores and Mw

total memory. Furthermore, the price of running each VM is

Pvm ($) per second. For a particular application (A), the user

specifies a deadline (D) before which this application needs

to complete. In addition, the user also defines the cores per

executor (Ce) value. If all the memory of a worker (Mw) is

evenly associated among all the cores (Cw), then (Mw/Cw)

amount of memory will be associated with each core. There-

fore, memory in each executor (Me) will be Ce ∗ (Mw/Cw).
In Apache Spark, for a particular application, all the executors

need to be identical. Therefore, our problem is now to find the

number of executors (E) to use with an application that meets

the user deadline (D) and also minimizes the total cost.

We model this problem as a constrained non-linear opti-

mization problem as follows:

Minimize: Cost = Pe ∗ E ∗ T (1)

subject to:

1 ≤ E ≤ Emax (2)

T ≤ D (3)

where:

Pe = Ce ∗ (Pvm/Cw) (4)

Me = Ce ∗ (Mw/Cw) (5)

Emax = Nw ∗ (Cw/Ce) (6)

T = f(E, I) (7)

E,Ce,Me ∈ Z (8)

Cost Minimization: Eqn. 1 shows the objective function

where Cost is the dependent variable and executors (E) and

application completion time (T ) are the decision variables. In

addition, Pe is a constant value which represents the cost of

running one (1) executor.

Executor Capacity Constraint: As shown in Eqn. 2, we

have a lower bound and an upper bound on the number of

executors of an application. The lower bound should be one

(1) as each application needs at least 1 executor to process data

and the upper bound (Emax) depends on the available cluster

resources as shown in Eqn. 6.

Application Deadline Constraint: As shown in Eqn. 3,

application completion time (T) of a selected configuration

should meet the user specified deadline (D). In a case where

the model finds multiple resource configurations that satisfy

the deadline constraint, it will only select the one which has

the lowest cost.

Executor Price Estimation: As we associate equal amount

of memory with all the CPU cores in a VM, the number of

used CPU cores represents the price of a VM. Therefore, we

can find the price (per second) of a single CPU core from the

actual VM price by dividing the price for running each VM

(Pvm ($)) with total number of available cores in a VM (Cw).

Eqn. 4 shows the price estimation function of an executor

process. Pricing policy of this model can be easily converted

to a different scenario and allow users to use their own VM

pricing model.

Memory Capacity Constraint: The amount of memory for

an executor (Me) depends on the number of cores (Ce) in that

executor. In addition, it is also capped by the total memory of

a worker as shown in Eqn. 5.

Application Completion Time Prediction: As shown in

Eqn. 7, the proposed optimization model finds the value of

completion time (T ) as a function of executor (E) and the total

application input (I). We propose an application completion

time prediction model to be used as this function. This model

will be discussed in detail in the following subsection.

Integer Constraints: The number of executors (E), cores

in each executor (Ce) and memory in each executor (Me) must

be integers as shown in Eqn. 8.

B. Application Completion Time Prediction Model

An Apache Spark application uses it’s allocated executors

to process multiple chunks/splits of the whole input in parallel.

The partitioning or splitting of the input imposes a little

overhead on the actual running time. In addition, after all

the processing is finished, the result needs to be serialized

which also adds up to the total execution time. If the number

of input chunks is more than the number of executors, these

input chunks are processed like a batch in each executor. How-

ever, adding too many executors to achieve more parallelism

can cause overheads due to serialization, de-serialization and

intensive shuffle operations in the network. Therefore, when

an application is given more and more executors, performance

boost can be significant at the start. However, after some point,

adding more executors does not give any performance benefit

rather resources are wasted. Therefore, for a fixed input (I) of

an application, we can assume that the relationship between

executors (E) and completion time (T) can be modelled like a

power function as:

T (E) = α ∗ Eβ + γ (9)

where α, β and γ are the power model coefficients.

However, in reality, the application input is not a fixed

parameter. Therefore, we further assume that the coefficients

in Eqn. 9 are determined by the application input (I) and can

be modelled like a power function as:

α(I) = uα ∗ Ivα + wα (10)

β(I) = uβ ∗ Ivβ + wβ (11)

γ(I) = uγ ∗ Ivγ + wγ (12)

where, {uα, vα, wα}, {uβ , vβ , wβ} and {uγ , vγ , wγ} are

the power model coefficients in Eqn. 10 Eqn. 11 and Eqn. 12,

respectively. If we substitute α, β and γ of Eqn. 9, we find:

T (E, I) = (uα ∗ Ivα + wα) ∗ E(uβ∗Ivβ+wβ) + uγ ∗ Ivγ + wγ

(13)
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Eqn. 13 establishes the relationship of application completion

time (T) with respect to both executor (E) and application

input or iteration (I). Hence, it can be used in the resource

allocation model (Eqn. 7) to determine the completion time of

an application. In addition, this model can predict application

completion time with any size of input/ iteration and any

number of possible executors.

To determine the coefficients in Eqn. 13 for a particular

application, we make n observations of the application with

different inputs {I1 to In}. For each application input, we

measure the T values with respect to different E values

and fit them to establish a relationship as shown in Eqn. 9.

Therefore, we will get three (3) set of coefficients: {α1 to αn},
{β1 to βn}, {γ1 to γn} for n observations. Now, if we fit

{α1 to αn} vs {I1 to In} values as Eqn. 10, we will find {uα,

vα, wα} coefficient values. Similarly, the values of coefficient

sets {uβ , vβ , wβ} and {uγ , vγ , wγ} can be found.

V. DSPARK FRAMEWORK OVERVIEW

A production cluster can be built with multiple computing

nodes connected in a local area network (LAN). However,

we can avoid the hassle of maintaining local machines by

using cloud services as it offers more affordable and flexible

computing resources to deploy a cluster. dSpark framework

can be used both locally or in a cloud deployed cluster.

Fig. 2 shows the proposed architecture of the dSpark Frame-
work. We have two (2) main modules: Profiler and Resource
Allocator. These modules work collaboratively on top of the

cluster manager to generate a cost-effective, deadline-aware

RAS for an application. This RAS can be used for real

deployment of this application in the cluster.

1) Resource Allocator: It is the main component of our

system. Algorithm 1 shows the steps performed by this mod-

ule. As an input to this algorithm, the application program

(A), input/iteration (I), user-specific deadline (D) and VM

price (Pvm) is given. At first, the Profiler module is invoked

to generate application profiles (line 3). Then the application

completion time prediction model is built (line 4) as discussed

in section III.B. While building the model, the algorithm finds

all the coefficient values of Eqn. 13. The Find − RAS()
procedure called in line 5 implements the resource allocation

model to select the optimal RAS.

Algorithm 1 Resource Allocator Algorithm

1: Input: A, I,D andPvm

2: Output: Resource Allocation Scheme (RAS)

3: ApplicationProfiles← PROFILER(A, I)
4: TIME-ESTIMATE-MODEL(ApplicationProfiles)
5: RAS ← FIND-RAS(D, I, Pvm, α, β, γ)
6: return RAS

2) Spark-Profiler: This module is controlled by the Re-

source Allocator module to generate application profiles for

an application. The profiler module runs the application with

different RAS, varying inputs or iterations (in case of iterative

applications like PageRank) in the cluster. After that, it uses

a sub-module called LogParser to get the completion times

of an application from the logs in the master node. Finally, it

generates the application profiles and sends to the Resource

Allocator module. Spark-Profiler is configurable by the user

to set the portion of input that needs to be profiled before the

actual deployment of an application. By default it uses 10% of

the input workload for profiling. As the application completion

time prediction model uses multiple increasing input to build

the model, we used the initial chunk repeatedly to increase it

to the desired size.

Algorithm 2 Resource Allocation Scheme (RAS) Generation

1: Input: Nw,Mw, Cw and Ce

2: Output: Resource Allocation Scheme List (RASL)

3: CALCULATE(Me) (Eqn. 5)
4: CALCULATE(Emax) (Eqn. 6)
5: E ← 1
6: while E ≤ Emax do
7: RAS ← {Ce,Me, E}
8: RASL← RASL+RAS
9: E ← E + 1

10: end while
11: return RASL

To submit an application to a Spark cluster, a RAS need

to be specified as a limit on the possible cores per executor

(Ce), memory per executor (Me) and total executors (E)

per application. In order to generate the application profiles,

we need to run the application with different RAS and in-

put/iteration. Algorithm 2 shows a simple Resource Allocation

Scheme (RAS) generation technique which is used by the

Profiler module. To generate the possible resource allocation

schemes, knowledge on the total amount of cluster resources

is needed. As previously noted, we assume that all the worker

nodes (VM from cloud perspective) are homogeneous in a

Spark cluster. Therefore, as an input to our algorithm, the total

number of worker nodes and only the configuration of a single

worker node is given. At first the algorithm finds Me and Emax

values. In the next part of the algorithm (line 5 to line 8), the



total number of executors per application is varied to generate

different RAS. All the generated RAS are added to a list called

Resource Allocation Scheme List (RASL).

dSpark can be installed as a small plug-in to the master

node of an Apache Spark cluster. First, the user needs to

specify any required configurations in dSpark. Then, the user

should submit the applications directly to dSpark instead of

the cluster. After selecting the RAS for an application, dSpark

automatically submits the application to the production cluster

with the selected RAS.

VI. PERFORMANCE EVALUATION

A. Implementation

We have used Java programming language to develop the

proposed framework. We have implemented the Spark-Profiler
module to profile any spark application with a given input size

and a RAS. This module uses SparkLauncher Java API [21] to

submit applications to the cluster. After an application finishes

its execution, a sub-module called LogParser is used to parse

the logs in the master node to retrieve the completion time of

that application. We have implemented Resource Allocator as a

separate module and it controls the Spark-Profiler module. At

first this module reads the configuration files to get the infor-

mation about the cluster resources. As discussed in Algorithm

1, this module implements both Application Completion Time
Prediction Model and the Resource Allocation Model as two

different procedures. To build up the application completion

time prediction model, we have applied curve-fitting tools

from Apache Common Maths Library [22]. For solving the

constrained minimization problem in our resource allocation

model, we haved used JOptimizer Library [23].

B. Experimental Setup

1) Cluster Configuration: We have deployed an experimen-

tal Apache Spark cluster on Microsoft Azure Virtual Machines

(VM). For the master node, we have chosen “standard D4”

size VM instance which has 8 cores and 28 GB memory. We

have made two (2) worker nodes with “standard D5v2” size

VM instance each having 16 cores and 56 GB memory. For

storage, we have created an Azure Storage Account to deploy a

shared storage device mounted in all the VMs. The replication

option chosen for this storage was “Locally redundant storage

(LRS)”. In LRS, data is replicated three times within a single

data center which is located in a single region. All the volumes

and VMs were created in the “Australia South-East” region.

We have installed Ubuntu Server Version 16.04 LTS in all

the nodes and installed Apache Spark Version 2.0.1 on top

of it. In addition, we have utilized the standalone cluster

manager that comes by default with Apache Spark. We have

kept 15 CPU cores and 45 GB of memory of a VM for each

worker node. For OS specific daemons and other application

programs, we have left the rest of the CPU cores and memory.

In our experiments, we have defined the Ce value to be five

(5) which is recommended by the Spark developers because

using large number of cores in a single executor results bad

I/O throughput and having more executors each with fewer

cores results in high garbage collection (GC) and scheduling

overhead. However, this value can be configured in dSpark by

the user if required. The price (Pvm) of each “standard D5v2”

instance was $0.0795 AUD at the time of the experiments.

2) Benchmarking Applications: We have used Big-

DataBench [24], a big data benchmarking suite to evaluate the

performance of our proposed models. We have chosen three

different types of applications. These are: (1) WordCount:
compute intensive application, (2) Sort: memory and compute

intensive application and (3) PageRank: iteration based shuffle

intensive application.

3) Application Profiles: We have used the Spark-Profiler

module to collect application profiles for all the benchmarking

applications. For WordCount application, we have collected

application profiles for 5 GB, 10 GB, 20 GB, 40 GB and 80

GB of input workloads. For Sort application we have collected

application profiles for 3.5 GB, 7 GB, 14 GB, 28 GB and 56

GB of input workloads. Lastly, for PageRank application, we

have collected application profiles for 5, 10, 15, 20 and 25

iterations for the same 4 GB input graph. We have built the

application completion time prediction model as discussed in

section III.B and calculated all the coefficients of Eqn. 13.

C. Analysis of Results

1) Accuracy of Application Completion Time Prediction:
Fig. 3 shows E vs T curves for three (3) different applications:

WordCount (3a), Sort (3b) and PageRank (3c). For WordCount

and Sort, we have used different size of application inputs. For

PageRank application, we have considered different iterations

on the same input graph. From these graphs, it can be observed

that there is a decrease in execution time when the number

of executors is increased. However, the decrease in execution

time is steeper upto 3 or 4 executors. After this point, the

execution time does not decrease significantly even if more

executors are used for an application. Due to some perfor-

mance limiting factors like: data serialization/de-serialization,

network I/O and shuffle operations, this behaviour was seen

from the applications. As all the curves shown in Fig. 3 follows

a steady power model, it validates our assumption of using

power models to establish the relationship between executor

(E) and application completion time (T). While we built up the

application completion time prediction model, we have found

steady power models for the input vs coefficient graphs.

Fig. 4 illustrates the difference between the predicted com-

pletion times and the measured completion times of three (3)

different applications. From all these graphs, it can be clearly

seen that the predicted completion time curves fall closely

to the measured completion time curves. We have computed

the relative error RE = (Tpredicted − Tmeasured)/Tmeasured.

We got a mean RE of 5%, 3% and 8% for WordCount,

Sort and PageRank applications respectively. As our proposed

model has a lower mean RE values for all the experimented

applications, it can be used with the resource allocation model.

2) Cost Analysis: Fig. 4 compares the cost of running ap-

plications between the proposed resource allocation model and

the default Spark resource allocation. We have measured the
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Fig. 4. Accuracy of application completion time prediction for different applications

cost for both approaches with various user-specific deadlines.

Fig. (5a-5c) illustrates cost comparison of the WordCount

application with 20 GB, 40 GB and 80 GB inputs respectively.

Fig. (5d-5f) illustrate cost comparison of the Sort application

with 15 GB, 30 GB and 50 GB inputs respectively. Lastly, Fig.

(5g-5i) illustrate cost comparison of the PageRank application

with 5, 10 and 20 iterations respectively. As seen from all these

graphs, cost for running application in the default approach

shows a horizontal line in the all cases. In the default approach,

each application uses all the resources in the whole cluster.

Therefore, even for various user-specified deadlines, it gives

the cost of using all the resources. However, our proposed

model tends to use more resources only when an application

has a strict deadline. In this case, the model utilizes more

resources to meet the deadline thus costs higher. When the

deadline starts to become more flexible, our model uses a

small set of resources to meet the deadline and reduces the

cost significantly.

3) Resource Usage Analysis: Fig. 6 compares the resource

usage between the proposed approach and the default ap-

proach. In our models, we have considered Executors (E) as

a chunk of resource as the actual VM resources (CPU cores,

memory) are distributed among the executors. However, the

size of the executors used by both of these approaches are

not the same. In default resource allocation technique, only

one (1) executor is launched in each worker node. Therefore,

in our experimented cluster, the default approach makes two

(2) executor each having fifteen (15) CPU cores. However,

in our proposed approach, the cores per executor (Ce) value

is flexible and can be tuned according to the application

needs. As mentioned before, in our experimental setup, a

developer recommended value is used for (Ce). Therefore,

we compare the default and proposed approach in terms of

CPU cores usage per application. Memory consumption is

not shown because we evenly associated all the memory in

a VM with the CPU cores. Therefore, higher number of CPU

cores usage reflects high amount memory usage. Fig. (6a-

6c) compares CPU cores usage of WordCount application for

different size of input workloads. In addition, Fig. (6d-6f)

compares CPU cores usage of Sort application for different

size of input workload. Lastly, Fig. (6g-6i) compares CPU

cores usage of PageRank application for different iterations of

the same input graph. It can be observed from these graphs

that, in all cases, default approach uses all the CPU cores

available in the whole cluster to run an application. As we have

total 30 CPU cores in the whole cluster, in default approach,

all the applications have used 30 CPU cores. Variations in

the user-specific deadline does not change resource usages

for default resource allocation. However, in the proposed

approach, our resource allocation model tries to meet user-

specific deadline for an application. If it is possible to use less

resources to meet the user-specific deadline, to minimize cost
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Fig. 5. Cost of resource usages by the proposed and the default approach for different applications

and resource usages, our model selects that resource allocation

scheme. Therefore, for the applications with strict deadlines,

we observe high resource usages and for the applications

flexible deadlines, we see less resource usages.

From both Fig. 5 and Fig. 6 it can be observed that our

model handles both strict and flexible deadlines better than

the default approach. As we discussed before, using large

executors poses performance overheads on the applications.

Therefore, the default approach shows poor performance and

more deadline violation occurs with strict deadlines. In both

of our analysis, we did not include the initial profiling cost as

it needs to be done only once for each application.

VII. CONCLUSIONS AND FUTURE WORK

Distributed, large-scale processing of big data has a signif-

icant impact on both research and industry. Apache Spark is

becoming more popular as a cluster computing engine due to

its high-speed data processing capability, extensive applica-

bility in various domains and wide-range of high level APIs.

To support user-specific SLA requirements and to maximize

an Apache Spark cluster utilization, our research focuses on

proposing a cost-effective resource allocation model. The aim

is to allow the user a way of automatic and efficient deploy-

ments of applications in a local or cloud cluster. We have

developed a profiler for Spark which can be used to profile

an application in the real cluster in terms of different resource

allocation schemes and input workloads. Moreover, we have

developed a light-weight resource allocation framework called

dSpark that can be plugged into the master node of an Apache

Spark cluster. Applications can be submitted to dSpark instead

of directly submitting to the cluster. Based on the application

profiles received from the profiler, dSpark uses the proposed

resource allocation model to select a deadline-based cost-

effective resource allocation scheme to deploy an application

to the cluster.

We have conducted experiments to evaluate the efficiency

of our proposed models. In addition, we have shown the

accuracy of the application completion time prediction model

for three (3) different applications. The mean relative error in

the prediction model was less than 7% for different types of
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Fig. 6. Comparison of resource usages between the proposed and the default approach

applications. Furthermore, we have evaluated the effectiveness

of the resource allocation model in terms of cost and resource

usage and compared the results with the default resource

allocation approach in Spark. We have showed that our

model selects cost-effective resource allocation schemes that

effectively handles various user-specific deadlines. In addition,

unlike some existing works, dSpark does not require the users

to specify application types as it would be difficult for an

end-user to have proper understanding of the application to

determine it’s type.

As our application completion time prediction model is built

by using knowledge from the application profiles, the accuracy

of this model depends on the intensity of application profiling.

The accuracy of this model increases with a higher number

of application profiles. Therefore, there is a clear trade-off

between model accuracy and the level of profiling. However,

application profiles can be made from past application runs to

reduce profiling overhead.

We have assumed that all the worker nodes of the cluster are

homogeneous. To accommodate heterogeneous worker nodes

in the cluster, the methods for finding the maximum possible

number of executors need to be changed and we plan to do this

in our upcoming work. Furthermore, we plan to develop an

application-level scheduler for Apache Spark. Determining ef-

fective resource allocation schemes of a big data application is

the first step towards SLA-oriented scheduling of multiple big

data applications. dSpark can be used to build the knowledge

of resource demands of an application under varying SLA.

Therefore, knowledge acquired from dSpark can be used with

the application-level scheduler.
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