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Abstract: Scenario analysis and improved decision-making for wildfires often require a large number
of simulations to be run on state-of-the-art modeling systems, which can be both computationally
expensive and time-consuming. In this paper, we propose using a Bayesian model for estimating the
impacts of wildfires using observations and prior expert information. This approach allows us to
benefit from rich datasets of observations and expert knowledge on fire impacts to investigate the
influence of different priors to determine the best model. Additionally, we use the values predicted by
the model to assess the sensitivity of each input factor, which can help identify conditions contributing
to dangerous wildfires and enable fire scenario analysis in a timely manner. Our results demonstrate
that using a Bayesian model can significantly reduce the resources and time required by current
wildfire modeling systems by up to a factor of two while still providing a close approximation to
true results.

Keywords: Bayesian inference; wildfire modeling; model fitting; sensitivity analysis; scenario analysis

1. Introduction

Each year natural disasters such as wildfires cause harm to people and significant
destruction of physical infrastructure. To better understand these phenomena and reduce
their impact, various natural hazard models have been developed over the years [1,2].
The effectiveness of dynamic systems based on these models often depends on how quickly
they can predict the unfolding of events. Currently, several simulation models, such as
Firemap [3], SiroFire [4], Prolif [5], Farsite [6], Pyrocart [7], Firemaster [8], FireStation [9],
Prometheus [10], Spark [11], and Phoenix [12], are used to predict the spread of wildfires
across a landscape based on pre-existing fire spread models. Deriving accurate risk metrics
often requires a large number of fire simulations, and the inputs to these wildfire spread
models have associated uncertainties that can influence the resulting rate of speed and,
consequently, the area burned by the fire. Quantifying the sensitivity of these parameters
to the resulting output is useful for worst-case scenario analysis in operational risk man-
agement [13]. However, such scenario analysis for effective wildfire management requires
additional simulations to be run under various combinations of input values, which can be
both computationally expensive and time-consuming [14].

Several methods and tools are available for conducting sensitivity analysis in the
environmental and wildfire context. These include variance-based approaches such as
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Sobol’s method [15], Cukier’s method [16], and Saltelli’s method [17]; density-based meth-
ods such as Krzykacz’s method [18], Plischke’s method [19], and Pianosi’s method [20];
neural network methods [21,22]; Taylor series expansion [23]; and polynomial chaos expan-
sion [24]. Additionally, several tools such as the Monte Carlo Analysis Toolbox (MCAT) [25],
Eikos [26], MATLODE [27], SAFE (Sensitivity Analysis for Everybody) [28], SALib [29],
and OpenTURNS (Open source Treatment of Uncertainty, Risk ’N Statistics) [30] have been
developed for sensitivity analysis. However, these tools can only be used once the sets
of input and output values are available. While these methods and tools are useful for
conducting sensitivity analyses of fire simulations, they do not consider the computational
requirements of running the fire simulations under a large number of input combinations,
as required by these methods and tools. As a result, using a conventional wildfire man-
agement system to run any of these methods or tools for scenario analysis in emergency
planning and management may be prohibitively time-consuming, hindering the ability to
make better-informed decisions to minimize the extent of damage caused by the disaster.
In this work, we investigate whether Bayesian models can reduce the computational re-
quirements of such analyses while maintaining a close approximation to true results and
assessing wildfire impacts.

The Bayesian approach is a widely used method in the literature for constructing
models to explain various phenomena. It involves fitting a probabilistic model to a given set
of data to summarize and predict new observations. In the wildfire domain, the Bayesian
approach has been used in several applications; prediction of the likelihood of large
fires [31,32], projection of wildfire activities [32,33], estimation of fire suppression costs
and resource allocation [34,35], estimation of the size of extreme fires [36–38], wildfire risk
assessment [39–42], and prediction/modeling wildfire behavior [43–47]. One advantage
of using Bayesian models in wildfire applications is that it allows for the incorporation of
prior knowledge to any observation data sizes to make approximate estimations. Despite
requiring a large number of simulations, wildfire management practices, such as scenario
analysis, can benefit from the Bayesian model to reduce computational costs while still
providing realistic predictions.

The main objective of this paper is to investigate the application of a Bayesian model
for combining prior knowledge and data to make predictions for wildfire management
practices, such as scenario analysis. These predictions will help to significantly reduce
the computational requirements of such analyses as only a fraction of the entire input
combinations would now be required to be run using the fire simulation tool. The proposed
Bayesian model is used to estimate the impacts of wildfires at a location based on three
major meteorological inputs: temperature, relative humidity, and wind speed collected
from weather stations. The choice of these parameters is based on the experimental setup
of previous works [48,49], and the goal of this investigation is to determine the potential
time and resource savings that can be achieved through the use of a Bayesian model in
wildfire modeling systems.

We build two Bayesian models for comparison, one with and one without a latent
effect. The use of a latent effect is investigated to determine whether it improves the
accuracy of the model and under what circumstances it can be ignored for the simplicity
of the model. If the addition of the latent effect does not improve the model’s accuracy,
it can be omitted for the sake of simplicity. Additionally, we evaluate the performance
of the models under different priors for the hyperparameters associated with the input
parameters to the fire simulations. We then apply the best-performing Bayesian model to
estimate the impact of a wildfire (fire size) based on the available data and prior information.
The predicted values, along with the data, are used to estimate the sensitivity of the fire area
to the input parameters, which can enable scenario analysis in wildfire modeling systems.

The remainder of the paper is organized as follows. In Section 2, we provide a detailed
overview of the workflow for this study. In Section 3, we explain the experimental setup
for the study, while in Section 4, we present the results and discuss our findings. Finally,
in Section 5, we offer conclusions and suggestions for future work.
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2. Workflow

Figure 1 illustrates the overall workflow of the study that investigates the reduction of
computational requirements for sensitivity analysis in wildfire management through the
use of a Bayesian model. The following section outlines the Bayesian model fitting process
and then describes the experimental setup for its application.

Figure 1. Workflow Diagram. Before investigating the effects of a latent process, the entire dataset
is used for Bayesian model fitting. After evaluating the performance of the model for six different
priors of the precision parameter, the best model is selected. For sensitivity analysis and scenario
analysis in wildfire management, we use a combination of true observations and the best model’s
predicted values.

2.1. Bayesian Model Fitting

For Bayesian model fitting, we first investigated the influence of latent effects in the
model before identifying the best prior for the precision parameter in the model.

2.1.1. Influence of Latent Process

In our Bayesian model fitting, the joint posterior distribution of parameter θ is con-
ditional on the observed data y, and hence we write the posterior distribution as follows.

p(θ|y) = p(y|θ)p(θ)
p(y)

(1)

where p(y|θ) is the likelihood of the data given all the parameters θ, p(θ) is the prior
distribution of the parameters, and p(y) is the marginal likelihood. p(y) is a normalizing
constant and is mathematically equal to:∫

p(y|θ)p(θ)dθ (2)

The dimension of the posterior distribution p(θ|y) usually depends on the parameter
dimension, i.e., on θ, and can be obtained using joint posteriors as follows.

p(θ|y) ∝ p(y|θ)p(θ) (3)

In other words, the posterior distribution of the parameters can be estimated by scaling
the product of the likelihood and the prior.

We considered the Bayesian model shown in Equation (4).

y ∼ N
(

µ, Inσ2
ε

)
(4)
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where y is the fire area in hectares that follows a normal distribution with latent mean µ
and variance σ2

ε . Here, In is an identity matrix of order n. For each fire area, we use the
Spark input data, i.e., the meteorological information, to identify the latent process µ, as
given in Equation (5).

µ ∼ N

(
β01n +

3

∑
j=1

β jxj, Σ

)
(5)

where β0 is the intercept and β1, β2, β3 are the coefficients associated with the meteorological
data x, i.e., we write β j, j = 0, 1, 2, 3.

We define the term Σ as a correlated fire area variance-covariance matrix. Note that
for simplicity, we use a fixed correlation structure S to define the fire areas; thus we write
Σ = σ2

s S. This leads us to use the prior distribution for σ2
s instead of the whole correlation

structure Σ.
To relate the model parameters in Equations (4) and (5) with the posterior distribution

in Equation (3), we define θ =
(
µ, σ2

ε , Σ
)′ and the log of the joint posterior distribution of

the model parameters is given by:

log P(θ|y) ∝ −n
2

log σ2
ε −

1
2σ2

ε
(y− µ)′(y− µ)

− log |Σ|1/2 − 1
2
(µ− ∆)′Σ−1(µ− ∆)

+ log P(θ)

(6)

where ∆ =
(

β01n −∑3
j=1 β jxj

)
, and P(θ) is the joint prior distributions of the model

parameters: β j, j = 0, 1, 2, 3, σ2
s , σ2

ε . Under the INLA structure, we approximate the joint
posterior distribution in Equation (6) and consider the posterior marginals. Hence, we
write the marginals for the latent process µ as follows.

P(µj|y) =
∫

P(µj|σ2
ε , y)π(σ2

ε )dσ2
ε (7)

In addition to the Bayesian model that takes latent correlated effects of fire areas
into account, we also consider a simpler version of the model that does not consider these
effects. For Bayesian model updating, we use the Integrated Nested Laplace Approximation
(INLA) [50] framework. INLA is a newer approach for computing Bayesian models that is
less computationally expensive than popular Markov chain Monte Carlo (MCMC) methods,
such as Gibbs sampling [51], which can provide similar solutions for posterior distributions
of the parameters of interest.

2.1.2. Sensitivity to the Priors

To analyze the sensitivity of the models to the priors, we considered six different prior
distributions for the parameters in the model. In this paper, we present the sensitivity to
the priors only for the precision parameters, as the distribution of the fire area is more
sensitive in the tails. The priors we consider include the half-Cauchy, half-t, log-gamma,
half-normal, penalized complexity (PC log-gamma), and uniform improper, as listed in
Table 1. The values of the parameters of the priors are so chosen to make the priors
weakly informative and let the observation data set drive the posteriors. We included
the penalized complexity prior in our sensitivity analysis to investigate whether priors
based on probability statements about the parameters (PC priors [52]) result in better model
performance compared to default priors. We then analyzed the sensitivity by examining the
posterior marginals of the three weather input parameters: temperature, relative humidity,
and wind speed.
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Table 1. Different Priors for the precision parameter used for model fitting.

Priors Parameters Name Parameters Value

half-Cauchy mean, scale (0, 25)
half-t mean, shape (0, 3)
log-gamma shape, rate (1, 0.00005)
half-normal mean, precision (0, 0.001)
PC log-gamma shape, rate (5, 0.01)
uniform improper standard deviation (σ) πUN(σ) ∝ 1

2.1.3. Evaluation Metrics

To compare the models with and without latent effects and different priors, we use sev-
eral metrics: the marginal likelihood (MLK) [53], Deviance Information Criterion (DIC) [54],
Watanabe–Akaike Information Criterion (WAIC)[55], and Conditional Predictive Ordinates
(CPO) [56]. The MLK is the probability of the observed data values in the fitted model and
can be used to estimate posterior probabilities in the model. DIC and WAIC are model
performance criteria that measure the complexity of the model by considering the goodness
of fit and penalty term, along with the effective number of parameters. CPO is the posterior
probability of observing a value when the model is fitted using all the data except the
observation in question. In this paper, we use the CPOs of all the observations, transformed
through a log transformation, as shown in Equation (8).

CPO∗ = −
n

∑
i=1

log(CPOi) (8)

where n is the total number of observations.

3. Experimental Setup
3.1. Fire Simulation Tool—Spark

We used Spark [11] to simulate and predict the spread of wildfires under different
conditions and fuel types. It provides a flexible platform for simulating wildfire behavior
in various vegetation types by allowing the integration of different packages and models,
such as wind field generation and topographic correction, fire ignition models, fire-line
interactions, fireband transport, and fire transmission models. The simulations require
input data on fire behavior, land classification, fuel load, topography, and weather to
produce output metrics such as total burned area, fire intensity, and the number of urban
cells burned. In addition to predicting fire progression, Spark can also predict fireband
dynamics and risk metrics for fire severity and impact. It can model firebreaks, spot fires,
and the coalescence of different parts of the fire over time and is able to run simulations for
multiple fire perimeters simultaneously. The calculations in Spark are parallelized using
the OpenCL framework. More information on Spark can be found in [57].

3.2. Weather Inputs

For this study, we selected three weather inputs: temperature, relative humidity,
and wind speed, based on the experimental setup of previous research [14,48]. The ranges
and distributions for these inputs, as provided in Table 2, follow the same experimental
design. These values were chosen to cover operational weather conditions for wildfire
modeling in the Australian context and can easily be modified as needed. Wildfires tend to
grow more aggressively under conditions characterized by high wind speed, temperature,
and low relative humidity. The other static inputs for fire simulations were taken from
configurations and records maintained by the Tasmanian government and the TFS [58]. All
simulations were run for five hours, and the cumulative burned area during this period
was reported as an output.
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Table 2. Range and Probability Density Function (PDF) of three input parameters—temperature,
relative humidity, and wind speed. The ranges and the distributions of the input parameters are
chosen to cover operational weather conditions for wildfire modeling in the Australian scenario as
per the experimental setup of our previous research.

Parameters Unit Pdf Range

Temperature ◦C Uniform Distribution [10, 40]
Relative Humidity % Uniform Distribution [5, 90]
Wind Speed kmh−1 Uniform Distribution [10, 60]

3.3. Wildfire Management Practice Use Case—Scenario Analysis

We created a wildfire management use case of scenario analysis to identify the worst
conditions for aggressive wildfires. The scenario analysis is enabled by the results of the
sensitivity analysis, which quantifies the relative influence of each input parameter on fire
simulations. The sensitivity analysis uses two sets of data: one with true observations and
the other with Bayesian model-predicted values. The study area and evaluation metrics for
the application of the Bayesian model in the use case are discussed further below.

3.3.1. Study Area

Tasmania was chosen as the study area for the use case due to the frequent occurrence
of wildfires in the region, the availability of high-quality land datasets that can be used
in operational wildfire simulation tools, and the systematic grid configuration of fire start
locations, which has been well-studied [14,59]. During the 2018–2019 wildfire season, Tas-
mania experienced 841 wildfires that burned 310,311 hectares of forest [59]. The Tasmania
Fire Service has established a grid of 68,048 potential fire start locations at a distance of 1
km, regardless of the type of land, with locations on water bodies shifted to the nearest
land location. The model fitting is based on a dataset of fire simulations run at a single
location, considering different combinations of the input parameters. Tasmania also has
a detailed, high-resolution dataset of simulations, as maintained in one of our previous
works [60].

3.3.2. Sensitivity Analysis

We estimated the sensitivity indices of the input parameters in the fire simulation for
various sizes of true observations (sample size) used in the Bayesian models. The choice of
the priors of precision in the model was based on our initial findings, and the choice was
complimented with varied sample sizes to predict the values of fire area for combinations
of input parameters. For example, for a sample size of 4000, 4000 random true observations
were used to construct a fitted Bayesian model, which then predicted the fire areas for the
next 4000 sampled combinations of input parameters. The means of the predicted values
were considered for the estimation of the sensitivity indices.

For the sensitivity analysis of fire size to input weather parameters, 8000 samples for
different weather input combinations within their ranges were generated using Saltelli’s
sampling method [61]. The sensitivity indices were estimated with a variance-based sensitivity
analysis (SA) method (Sobol Analysis [15]) using the python framework SALib [29]. The choice
of the sampling method aligns with the method for estimating the sensitivity indices.

3.3.3. Evaluation Metrics

To further investigate the potential of the Bayesian model in reducing the computa-
tional requirements of scenario analysis in wildfire management, we used the measure of
similarity and the reduction in computational requirements. The measure of similarity, cal-
culated using Pearson’s correlation coefficient [62], assessed the closeness between the true
observed data and the Bayesian model predicted values for input combinations. The value
of the correlation coefficient ranges from 0 to 1, with higher values indicating better model
performance. Additionally, we estimated the reduction in computational requirements
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by calculating the total number of data values predicted by the Bayesian model, which
gives a theoretical upper limit of the possible reduction in computational requirements.
For example, if the Bayesian model predicted half of the data values used for sensitivity
analysis, the computational requirements would be reduced by up to a factor of 2.

4. Results and Discussion

In this section, we present and discuss the Bayesian model for model fitting, the
role of the latent process, and the model sensitivity to different priors. We also address
uncertainty quantification in the Bayesian model with an increased dataset and the estima-
tion of sensitivity indices using the model-predicted values and the available dataset for
scenario analysis.

4.1. Model Fitting
4.1.1. Latent Effects

Table 3 shows a comparison of the two fitted models. All the metrics favored the model
with a latent process over the model without one. The model without a latent process had
a higher value of marginal likelihood than the model with random noise, indicating that
the observed values were more likely to occur in the latter model. Additionally, the lower
values of DIC and WAIC for the model with the latent process indicated a better fit with
better goodness of fit. The higher calculated values of CPO* also showed that both models
had a good fit, with the model with a latent process performing slightly better. These
metrics demonstrate that the latent process in the Bayesian model fitting contributed to
slightly improved performance. Based on our analysis, the model with the latent process
should be preferred. However, due to the insignificant differences between the values of
the metrics obtained for both models, both models can be used for predictions with the
appropriate priors.

Table 3. Comparative Analysis of Bayesian models. All the evaluation metrics favor the model with
random noise as the model had marginally improved performance than the model without random
noise. Due to insignificant differences between the values of the metrics, both models may be used
with proper priors.

Components With Latent Process Without Latent Process

MLK 64,329.60 64,561.05
DIC 128,586.56 128,945.93
WAIC 128,584.76 129,008.34
CPO∗ 8.04 8.063

4.1.2. Sensitivity of Bayesian Modeling to Priors

Figure 2 presents the posterior marginals of the temperature, relative humidity,
and wind speed model parameters (i.e., β’s) for various precision priors in the model.
The selection of priors can significantly affect the posterior distribution of the fitted model
parameters, as demonstrated by the posterior marginals of the input parameters. While
most priors yielded similar posterior marginals, the half-Cauchy prior resulted in a sig-
nificantly displaced posterior margin. In addition, we compared the performance of the
models with different priors based on four evaluation metrics and established a preference
order for the priors. Figure 3 displays the preference orders for the priors according to
these evaluation metrics, with 1 representing the highest performance and 6 the lowest.
The preference order for DIC overlapped with the preference order for CPO, and both are
depicted in the same order in the figure. Overall, the PC loggamma prior yielded the best
model performance, while the uniform and half-Cauchy priors performed relatively poorly.
The PC loggamma prior did, however, have the worst value for the MLK metric. Therefore,
the Bayesian model with the PC loggamma prior to precision was the most effective in



Atmosphere 2023, 14, 559 8 of 13

our analysis and should be employed in any further applications of the model in wildfire
management practices.

Figure 2. Posterior marginals of three input parameters—temperature, relative humidity, and wind
speed (left to right) with different priors of precision. The choice of priors in Bayesian models can
affect the posterior marginals of model parameters. Most of the priors produced slightly different
but similar posteriors, with the exception of the half-Cauchy prior, which resulted in significantly
displaced posteriors. The negative values for relative humidity indicate that higher relative humidity
values are associated with a decrease in fire size.

Figure 3. Preference order (1 is the highest and 6 is the lowest) of models with different priors based
on several evaluation metrics—DIC, WAIC, MLK, and CPO. The values for DIC and CPO are the
same, so they are represented by a single graph in the plot. Overall, the penalized complexity (PC)
prior (default loggamma) had better model performance, even though it had the worst value for
MLK. The Cauchy prior had the overall worst model performance.
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4.2. Wildfire Management Practice Use Case—Scenario Analysis
4.2.1. Similarity between True and Predicted Values

Before estimating the sensitivity indices of the input variables in the fire simulations
as an application of the Bayesian model fitting, we calculated the similarity score of the
prediction values given by the fitted models (considering the means) with the true data
values. Figure 4 illustrates the correlation coefficients calculated for various fitted models.
It is evident that the similarity to the true observations increases as the number of true
observations considered in the model fitting increases. Although an additional 1000 obser-
vations were considered in each model, the improvement in the correlation coefficients was
not substantial (only 0.02 from 4000 to 7000 observations).

Figure 4. Measure of the similarity between the true observations and the Bayesian model predicted
values. The similarity increased as more true observed values were considered in the Bayesian model
(sample size). However, the improvement in similarity was not significant even when the sample
size increased from 4000 to 7000.

4.2.2. Scenario Analysis through Sensitivity Analysis to Input Parameters

Figure 5 displays the sensitivity indices estimated for the input parameters in the
fitted model, compared to those estimated using actual values obtained from the wildfire
simulations. The indices based on the full data sets from the actual model runs indicate that
relative humidity, wind speed, and temperature had contributions of 72%, 19%, and 9%,
respectively. When the fitted model predicted 4000 values using 4000 true observations,
the contributions of the parameters in order were 80%, 13%, and 7%, respectively, which
are similar to the true values. As the fitted model considered more data points in the data
set for model fitting and predicted fewer data points, the estimated indices became closer
to the true values. These levels of influence of the input parameters align with the mean
values of the posterior marginals of the three input parameters. Estimating the sensitivity of
the fire area to input parameters through sensitivity analysis, in combination with posterior
marginals analysis provides important insights into the factors contributing to destructive
wildfires and facilitates scenario analysis. Wildfires tend to grow rapidly under high values
of temperature and wind speed coupled with low values of relative humidity.

4.2.3. Reduced Computational Requirements

The model fitted with only 4000 data points in our demonstration produced results
that were significantly closer to the true values. These findings have important implications
for state-of-the-art wildfire management systems, as they suggest that we can trade off the
time and computational resources required to run 4000 simulations for which the Bayesian
model predicts the values with the time and resources needed to build the Bayesian model.
Without considering the Bayesian model fitting, the computational requirements of the
fire model simulations are significantly higher. Our application of a Bayesian model for
worst-case scenario analysis through sensitivity analysis in wildfire management practices
demonstrated promising results, as we were able to obtain close-to-true values with only
4000 fire simulations instead of 8000, saving computational and time resources by up to
a factor of 2. Obtaining close-to-true predictions quickly during wildfire emergencies is
crucial for effective wildfire management.
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Figure 5. Sensitivity indices of fire size to input weather inputs estimated with true observations and
Bayesian model estimated values. The sample size of 8000 represents the complete dataset with all
true observations. Our application of Bayesian model-predicted values gave close-to-true estimations
of the sensitivity indices using as few as 4000 true observations. As the number of true observations
used in the estimation increased, the estimations improved in their closeness to the complete dataset
of true observations.

5. Conclusions and Future Work

Wildfire modeling systems are critical for understanding the spread of fires and making
informed decisions during emergencies. Obtaining close-to-true predictions quickly is
crucial in these situations. However, state-of-the-art wildfire management practices, such
as scenario analysis, often require a large number of wildfire simulations to be run, which
can be computationally expensive and time-consuming. In this study, we demonstrated
how probabilistic models built using Bayesian models can be used to improve wildfire
management practices. We also examined the impact of a latent effect on the performance
of Bayesian models and the sensitivity of the model to different priors for precision. Our
application of Bayesian models in estimating the sensitivity of fire size to input parameters
showed that this approach can significantly reduce the computational cost and time of
wildfire applications by a factor of up to two while still providing close approximations to
the true values.

The study presents promising results but has several limitations. The Bayesian model
used assumes a linear relationship between inputs and outputs, and only a few parameters
and fire area were considered. To further improve the study, the authors plan to build
more complex hierarchical Bayesian models with multiple inputs and outputs from fire
simulations. Additionally, the study is currently limited to a specific location in Tasmania,
and future research will expand this to consider the influence of spatial and fuel characteris-
tics that may vary with fire start locations. Finally, the complexity of building the Bayesian
model in terms of algorithms and computation is not considered and will be examined in
future research.
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