
24

A Stepwise Auto-Profiling Method for Performance

Optimization of Streaming Applications

XUNYUN LIU, University of Melbourne, Australia

AMIR VAHID DASTJERDI, PwC Australia, Australia

RODRIGO N. CALHEIROS, Western Sydney University, Australia

CHENHAO QU and RAJKUMAR BUYA, University of Melbourne, Australia

Data stream management systems (DSMSs) are scalable, highly available, and fault-tolerant systems that

aggregate and analyze real-time data in motion. To continuously perform analytics on the fly within the

stream, state-of-the-art DSMSs host streaming applications as a set of interconnected operators, with each

operator encapsulating the semantic of a specific operation. For parallel execution on a particular platform,

these operators need to be appropriately replicated in multiple instances that split and process the workload

simultaneously. Because the way operators are partitioned affects the resulting performance of streaming

applications, it is essential for DSMSs to have a method to compare different operators and make holistic

replication decisions to avoid performance bottlenecks and resource wastage. To this end, we propose a step-

wise profiling approach to optimize application performance on a given execution platform. It automatically

scales distributed computations over streams based on application features and processing power of pro-

visioned resources and builds the relationship between provisioned resources and application performance

metrics to evaluate the efficiency of the resulting configuration. Experimental results confirm that the pro-

posed approach successfully fulfills its goals with minimal profiling overhead.

CCS Concepts: • Information systems → Data streams; Stream management; Database performance

evaluation; • Social and professional topics → Quality assurance; • Software and its engineering →

Software performance;

Additional Key Words and Phrases: Stream processing, data stream management systems, performance

optimization, resource management

ACM Reference format:

Xunyun Liu, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Chenhao Qu, and Rajkumar Buyya. 2017. A Stepwise

Auto-Profiling Method for Performance Optimization of Streaming Applications. ACM Trans. Auton. Adapt.

Syst. 12, 4, Article 24 (November 2017), 33 pages.

https://doi.org/10.1145/3132618

1 INTRODUCTION

Stream processing—a paradigm that supports leveraging data in motion for analytics—is rapidly
emerging due to continuous generation of data and the need for their timely processing. Usu-
ally, stream processing is realized by a data stream management system (DSMS), a platform that

Authors’ addresses: X. Liu, C. Qu, and R. Buyya, Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Com-

puting and Information Systems, The University of Melbourne, Australia; emails: {xunyunl, cqu}@student.unimelb.edu.au,

rbuyya@unimelb.edu.au; A. V. Dastjerdi, 2 Riverside Quay, Southbank VIC 3006; email: amir.vahid@pwc.com; R. N.

Calheiros, Locked Bag 1797 Penrith NSW 2751 Australia; email: R.Calheiros@westernsydney.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1556-4665/2017/11-ART24 $15.00

https://doi.org/10.1145/3132618

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

https://doi.org/10.1145/3132618
https://doi.org/10.1145/3132618

24:2 X. Liu et al.

Fig. 1. The logical view of a streaming application on an operator-based DSMS.

supports online analysis of rapidly changing data streams while hiding the underlying complex-
ity of implementation from application developers. Currently, most state-of-the-art DSMSs such
as Storm1 and Samza2 are data-driven and operator-based. In operator-based DSMSs, continuous
operations on data are realized as logical operators standing on data streams, and the DSMS is
responsible for the partition and distribution of resources among operators to achieve satisfactory
performance (Aniello et al. 2013).

For a streaming application, resource partitioning largely depends on how operators are built
and organised. To better explain this process, Figure 1 illustrates the logical view of a typical
streaming application. The left part of Figure 1 shows that all the queries3 have been translated
into a pipeline of operators that perform transformations on the data. The relative size of operators
represents the relative time complexity, with edges indicating data flows within the application.
These operators and edges constitute the application topology, which can be modelled as a directed
acyclic graph (DAG) that wires the operations together and denotes the sequence by which a single
datum traverses the system.

When it comes to the implementation, the topology of a streaming application is further subdi-
vided. To enable parallel processing, each operator may have several tasks scattering out over the
platform. Each task is an operator instance that ingests a portion of operator input and executes
the whole operator logic simultaneously. As the right side of Figure 1 shows, tasks of a down-
stream operator in the topology take the results of its precedents as input and continuously feed
the successors with its output stream. Clearly, it is important for an operator to secure a sufficient
number of parallel tasks, so it could timely process its inbound load and avoid being the bottleneck
that throttles the overall throughput of the system.

However, decision of the number of instances in each operator depends on the specific appli-
cation deployment process, which involves provisioning resources from the underlying hardware
infrastructure and determining how the logical representation is mapped to a physical point of
view for real execution. The latter is known as a critical transition from logic notation to real
implementation. Figure 2 shows an example of this transition process. Tasks are wrapped up by
threads, which are usually considered as the minimum units of execution in terms of resource

1https://storm.apache.org/.
2 http://samza.apache.org.
3By query, we mean formal statements of information needs that apply on continuous streams and that demand some

computational capacity to be processed.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

https://storm.apache.org/
 ignorespaces http://samza.apache.org

A Stepwise Auto-Profiling Method for Performance Optimization 24:3

Fig. 2. The physical view of an example streaming application on an operator-based DSMS. After being

wrapped up by threads and processes, the tasks of operators are finally deployed on several physical or

virtual machines.

scheduling, then threads affiliated to several processes are deployed on the particular execution
environment. It is non-trivial task to make optimal choices in such transition from logical to phys-
ical view because:

(1) Different operators can have diverse requirements on different types of resources (CPU,
memory, network bandwidth, etc.).

(2) Changing the number of tasks for one operator may adversely affect the performance of
other operators that are collocated in the same machine, causing unexpected bottleneck
shift. Such kind of resource contention is hard to formally model.

(3) The transition is largely platform-dependent. Thus, without field testing, it is difficult to
guarantee the effectiveness and efficiency of the transition decision.

Due to the difficulties stated above, the most common approach used to determine operator
parallelism is to gradually measure the execution capacity of each operator and adjust the number
of tasks according to the expertise of the developer. Obviously, this method involves a huge
number of man-hours and may result in a suboptimal configuration. As existing research mainly
focuses on the other side of the problem, which is scheduling threads on processes or arranging
processes on machines (Cammert et al. 2007; Moakar et al. 2012; Aniello et al. 2013; Bellavista
et al. 2014), the research question of automatically finding a proper and integral solution to this
transition is largely overlooked.

Motivated by the goals of automation and enhanced developers’ productivity, we design and
implement a stepwise profiling framework that selectively evaluates several possible configura-
tions, monitors feedbacks, and provides an entire solution to the transition. The objective of the
proposed profiler is to determine the possible best performance4 that the application can achieve
in a particular execution environment. To the best of our knowledge, this is the first work using
profiling to holistically probe the best configuration for an arbitrary streaming application, which
is capable of striking a balance between the data source and data ingestion subsystems for it to
achieve sustainable high performance. Specifically, our main contributions are threefold:

4Though the meaning of performance may vary under various definitions of Quality of Service (QoS), we refer to it as the

ability to steadily handle an input stream of throughput T within an acceptable processing latency L. In this sense, higher

T means better performance as long as the latency constraint is met.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:4 X. Liu et al.

—Our profiling system automatically scales up the streaming application on a given platform.
Such processing parallelization is achieved by profiling of both application features and
processing power of provisioned resources. Therefore, developers are no longer required to
provide parallel settings beforehand.

—The profiling strategy is designed as a feedback control loop that allows for self-adaptivity,
scalability, and general applicability to a wide range of streaming applications, which is
demonstrated in our experiments.

—Based on the result of profiling, the relationship between resource provisioning and per-
formance metrics of application is built, enabling further evaluation of the efficiencies of
candidate topologies that are implemented for the same streaming application.

2 MOTIVATION

The development cycle of a streaming application on an operator-based DSMS typically consists of
two phases. The first phase consists in the logic development, where all the continuous queries or
other data operations are implemented as logical operators working on data streams. The second
phase consists in the application deployment, which mainly comprises a transition from logical
to physical view. In this phase, the parallelism setting for each operator is determined and the
decision on how tasks of operators are wrapped up and mapped to underlying resources is made,
which are collectively referred to as a parallel configuration. Our primary motivation is to automate
the transition and ensure that, in the resulting configuration, resources are properly partitioned
among operators to enable better performance.

As mentioned above, optimization of the application deployment is a nontrivial process. Here
are three fundamental prerequisites that a streaming application should meet before it comes into
service.

Application scaling: Scaling up5 is a critical process for a streaming application to use dis-
tributed resources. As scaling is both resource specific and topology dependent, there is no uni-
versal model able to provide a general solution. Therefore, the transition in the second phase has to
be designed and performed by developers according to their own experiences, which causes addi-
tional development burden and may not yield efficient resource utilization. It becomes even more
problematic when the underlying resource structure is configurable. State-of-the-art DSMSs are
integrating elasticity into their implementation to enable resource consumptions customization
with regard to fluctuating workloads. They support (1) dynamic resizing, for example, DSMS can
be scaled out by adding new machines, and (2) adjustable operator parallelization, which allows
stateful and stateless operators to choose their number of tasks to suit different sizes of execution
environment. However, applications running on an elastic DSMS do not have the ability to adapt
their configuration to infrastructure changes, meaning that they are unable to automatically take
advantage of newly added compute resources when the DSMS is scaled out, and may face severe
resource contention due to excessive parallelization when the DSMS is scaled in. Our work fills
in this gap by automating the scaling-up process once the underlying system is updated, which
complements efforts toward making DSMS scalable and elastic (Schneider et al. 2009, 2012; Castro
Fernandez et al. 2013; Gedik et al. 2014).

Besides, it is also desirable to quantitatively evaluate how efficient the transition is and au-
tomatically probe whether there is still room for improvements. However, due to the labor-
intensive task of manual deployment, it is a common practice for developers to stop scaling up the

5Scaling up refers to further parallelizing the execution of logical operators to improve the resource utilization of a stream-

ing application, whereas scaling out/in stands for adding or removing machines.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:5

application when a transition that meets the requirement of performance is found. Nevertheless,
it may result in suboptimal resource utilization.

DAGs comparison: The topology of a streaming application is organised as a directed acyclic
graph (DAG) of logical operators. However, the conversion of queries and operations on data
streams into operators, which is performed in the first phase, can be conducted in multiple ways,
resulting in different topologies that are logically equivalent. It means that, although different
types of DAGs are formed by operators, they take the same input stream and all produce correct
answers. It is difficult but still necessary to determine which one is better with respect to their
performances in a particular platform.

Resource requirement analysis: It is essential to know how many resources are needed to
meet time constraints to handle the inbound stream. The answer depends on the volume of the
input stream and the application resource needs per input data element. In the context of stream
processing, the input stream may vary significantly in volume and speed and so does the amount
of resource needed per element. Usually, application developers do not have control over the input
data (Hummer et al. 2013), but tracking the latter could help them to guarantee real-time response
with minimal resource consumption when the workload varies. Based on this, a rule-based auto-
scaling approach could be proposed.

In this article, we choose application profiling as an empirical and adaptive approach to fulfill
the above targets. Compared to analytical models based on abstract modelling, profiling excels as it
provides more reliable results via real experiments. Furthermore, by taking advantage of profiling,
our method is generic enough to support different execution environments, including variations
in characteristics of underlying resources, load balancing of DSMS, and the type of streaming
application running on it. Besides, a recalibration mechanism has been introduced to ensure that
the decision on parallel configuration is up-to-date. Therefore, possible changes to application and
DSMS, as well as data-dependent variation affecting the execution time of data elements, will not
compromise the accuracy of profiled knowledge.

3 STEPWISE PROFILING OVERVIEW

The profiling process works by selectively evaluating several possible configurations and finally
choosing the one that shows the most promising performance potential, that is, the one capable
of processing more data streams per unit time while meeting the latency requirement.

Figure 3 describes the flowchart of our profiling approach and depicts how it applies to a word
count application on Apache Storm. The topology of word count consists of four operators: the
first operator, Kestrel Spout, pulls data from a queue server and generates a continuous stream of
tweets as its output. The second operator, JSON Parser, parses the stream and extracts the main
message body. Next, the Sentence Splitter divides the main body of text into a collection of separate
words, and finally the Word Counter is responsible for the final occurrence counting.

Regarding the profiling procedure, Application Feature Profiling (the first step) simulates the
situation in which each task has adequate resources to conduct its data operation. It feeds the
application with only a small size of input stream and aims to identify inherent application features
that are not affected by the change of parallel configurations. On completion of this process, it
determines the ratios of the numbers of tasks for the last three operators, which in this case is 2:2:3.

Platform Capability Profiling (the second step) stresses the platform with a high volume of input
data to push it to its capability limit. At the end of this step, the actual number of tasks for each
operator is determined.

Operator Capacity Profiling (the last step) makes necessary adjustment by monitoring the ca-
pacity of each operator. As our profiling model and measurement in the previous processes may
have introduced some errors, this is the place where possible amendments are made.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:6 X. Liu et al.

Fig. 3. Flowchart of stepwise profiling and a working demonstration on a word count application.

Fig. 4. The framework of stepwise profiling system. Components that constitute the stepwise profiler are

presented in the top of the figure and the profiling environment is depicted in the bottom of the figure.

The recalibration is essentially a repetition of the aforementioned profiling steps, triggered by
performance degradation, detected via monitoring, when the resulted configuration is no longer
suitable for the current system status.

4 STEPWISE PROFILING DESIGN

Figure 4 illustrates the architecture of our stepwise profiler (top half of the figure) and how it
interacts with the operator-based DSMS in the profiling environment (bottom half of the figure).

The profiling environment consists of a profiling message generator, a message queue, and an
operator-based DSMS. All the profiling input originates from the message generator, where real
data collected from the production environment is sent to the message queue at a controllable
speed. In the meantime, the message queue works as a data buffer to store possible backlogs when

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:7

Fig. 5. An example of application feature profiling in operation.

the DSMS cannot cope with the speed of data generation. The operator-based DSMS contains the
primitive streaming application logic as well as supporting hardware resources.

Each single round of profiling is a feedback control process that corresponds to a MAPE (Mon-
itoring, Analysis, Planning, Execution) loop, the approach of which is widely adopted in the field
of autonomic computing to enable self-adaptivity (Kephart and Chess 2003).

The MAPE loop starts with the metric reporter running alongside the DSMS, which constantly
collects current performance metrics from the evaluated streaming application. This information is
then acquired by the monitor module and being organized as a set of window-based performance
histories. The analysis phase is conducted by the three control units of our stepwise profiler as
shown in the grey box of Figure 4, which are referred to as Application Feature Profiler, Plat-
form Capability Profiler, and Operator Capacity Profiler. These modules check the collected per-
formance metrics according to their designated profiling strategies and make decisions on whether
another round of profiling is needed. The MAPE loop proceeds to the planning phase if the stop-
ping condition is not met. In this phase, the three control units make necessary amendment on
operator parallelism and rely on the configuration generator to compose a viable deployment plan,
which includes determining the speed of data generation for profiling, the number of tasks for
each operator, and how these tasks are deployed on DSMS. In the last execution phase, the con-
figuration modifier is responsible for applying changes and facilitating automation of application
deployment.

The recalibration module also works in the analysis phase to check if the previously profiled
configuration still suits the current system state. If not, then it will plan for the next round profiling
without using any prior knowledge.

4.1 Application Feature Profiling

As illustrated in Figure 5, the logical view of a streaming application is divided into two parts:
data source, the operator that forms the initial stream by continuously pulling data from external
sources, and data sinks, where inbound data is buffered into a waiting queue before being processed
by one of the parallel tasks.

The application feature profiling aims to identify two invariant properties that an operator
should maintain regardless of its parallel degree through the analysis of a data stream of a relative

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:8 X. Liu et al.

Table 1. Categorization of Operators Based on Its Relative Input/Output

Stream Size (Selectivity)

Type of Correlation Expression Example Operators

Proportional So = Ccoef ∗ Si Join, Function
Workload-Dependent So = f (workload) ∗ Si Split, Filter

Logic-Dependent So = д(loдic) Top N, Aggregation

small size. The first property is the minimal processing latency MinLp . As shown in Figure 5,
the processing latency Lp is the time interval that a single datum would spend in a task for
being processed, while MinLp , illustrated by the size of operator on the right side of Figure 5,
denotes the minimum value that Lp can reach in this particular platform. The second property
is the Relative Stream Size (RSS), which indicates the relative data transmission intensity for the
operator. The word “relative” means that the amount of data transmitted between operators is
normalized with regard to the total sum to show the proportion among operators. As shown in
the right of Figure 5, the width of the lines between the operators represents the size of data flow
relative to other visible streams.

These two properties remain constant regardless of the parallel configuration changes for two
reasons. First, for a given operator, MinLp only depends on its processing logic and how long it
takes for this logic to be executed in the platform. To measure MinLp it is important to assert
that the profiling stream load is sufficiently small, so each task of this operator obtains enough
resources as it requires to process the workload. On the other hand, changes in the parallelism
for an operator, such as adding new tasks for it, influence the waiting latency Lw rather than
the processing latency Lp , because a single datum in the stream cannot be executed by multiple
tasks concurrently. However, it is still possible that Lp increases due to improper configurations,
for example, congested tasks may cause severe resource contention that causes high processing
latency.

Second, the relative size of the data stream is a reflection of the operator type, which also makes it
parallel-configuration irrelevant. More specifically, a given operator could be categorized into one
of three types based on the correlation between its input stream and output stream, as presented
in Table 1. Si and So denote the relative size of input/output stream, respectively.

Proportional operators continuously work on one or more input streams and emit results based
on each piece of input, which means that the size of the output stream is linear to the size of input
stream, with Ccoef as a constant that represents the linear coefficient. Examples for this category
include stream joins and function operators. In the case of word count, the JSON Parser belongs
to this category, because its output size depends only on the particular input, and changes in the
number of tasks do not affect the output size.

In the case of workload-dependent operators, the relative size of the output stream is not only de-
cided by the size of input stream, but also it is influenced by the inherent property of the workload.
For example, different tweets may have different number of countable words, making the size of
output stream fluctuate even when the size of the input stream is stable. But in the case of Figure 5,
it is observed that, on average, the size of output stream for Sentence Splitter becomes 12 times
larger than the input streams, which means that the application profiling helps in identifying what
the value of f (workload) would be when subject to a production input. Obviously, this correlation
is also not affected by changes in the number of tasks available for the Sentence Splitter.

There are also logic-dependent operators whose output streams solely depend on the processing
logic. Some common examples include the Top N operator, which compares and emits the most
popular items based on their occurrences, and stream aggregation operator, which aggregates the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:9

input stream or regularly performs batch operations. The Word Counter operator in Figure 5 is
used for aggregation and thus is an example of a logic-dependent operator.

Whenever an operator becomes a bottleneck, the DSMS has to throttle the upstream and down-
stream operators to maintain the system stability. This leads to the observation that the streaming
application can be well-approximated with an intuitive queueing network of data flow, which runs
on a computational system of unknown capability where contention affects all tasks in the same
way. The latter assumption may not always hold true during the runtime, but it is reasonable for
us to depict the relative parallelism requirement for each operator.

In light of this, more resources (in this context, more tasks) should be allocated to operators with
relative larger input data streams and higher processing latency to prevent bottlenecks in the first
place. After profiling the minimal processing latency and relative stream size for each operator,
Algorithm 1 is proposed to provide an initial estimation on the number of tasks that an operator
should incorporate considering its complexity and the amount of stream load it processes.

In summary, Algorithm 1 determines the parallelism ratio of each operator based on its calcu-
lated task load. The task load TaskLoadi of operator i is formulated as the product of its minimal
processing latency MinLpi

multiplied by the sum of its input stream sizes
∑

k RSSk,i (index k it-
erates over all the input streams of operator i). After the algorithm finishes traversing all the

operators, each element in the resulted array
−→
R is updated with a parallelism ratio relative to the

weight of its task load (line 23). Note that in both line 16 and 23, the index s of max∀s TaskLoads

iterates through all the operators in the topology.
However, there are two exceptions to this general rule. Some operators are logically non-parallel,

which means that they can have only one task and thus are more likely to restrict the scalability
of the whole system. Our algorithm takes these operators into consideration by fixing their par-
allelism degrees to 1 and quantitatively calculating the restriction they pose to the total size of
stream flows (TotalFlow). TotalFlow intuitively estimates the maximum sum of throughput gen-
erated by each operator. Based on this, Algorithm 1 decides the parallelism ratio or degree for
other parallel operators to be able to handle the data stream of its share.

Second, some operators are non-scalable as they are dominated by logic-dependent operators,
which means that there exists a logic-dependent operator in every path that connects this operator
to the data source. Recalling that the size of output stream for a logic-operator is irrelevant to the
input size, we can reasonably infer, in this case, that the size of input stream would be constant even

if the system throughput increases. Therefore, instead of assigning parallelism ratios to them in
−→
R ,

Algorithm 1 calculates the initial parallelism degrees for these operators in
−→
P based onTotalFlow

and task load, indicating that their parallelism degrees are not to be proportionally scaled in the
next step.

The output
−→
R of Algorithm 1 only provides an array of decimals. However, the next step requires

an array of integers, as this array represents the ratio of number of tasks. In the decimal-to-integer
conversion, precision is not the primary concern, since the results may be subject to measurement
errors introduced by the profiling process. Therefore, the chosen value in the resulted integer
array is reduced if possible, in such a way that it still roughly depicts the basic proportions. For
this purpose, a parameter of unit task load called slice is introduced to convert all the decimals in
−→
R into integers according to Equation (1):

Ri ←
⌈ Ri

slice

⌉
slice ∈ (0, 1]. (1)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:10 X. Liu et al.

ALGORITHM 1: Calculate the Relative Ratio or Number of Tasks for Each Operator.

Input: MinLpi : minimum processing latency of operator i
Input: RSSi, j : relative stream size between consecutive operators i and j

Output:
−→
R : parallelism ratio array of parallel operators, in which Ri corresponds to operator i

Output:
−→
P : parallelism degree array of non-parallel and non-scalable operators, in which Pj

corresponds to operator j

1 Initialize each element of
−→
R to 1;

2 TotalFlow ← ∞;

3 Identify all the operators that are dominated by logic-dependent operator, label them as Non-Scalable;

4 foreach Operator i do

5 if i is Non-Parallel then

6 Pi ← 1 ;

7 TotalFlow ← min(TotalFlow, 1
MinLpi

∗∑
k

RSSk,i
);

8 end

9 else

/* Calculate TaskLoad for parallel operator i */

10 TaskLoadi ← MinLpi ∗
∑

k
RSSk,i ;

11 end

12 end

13 foreach Parallel Operator i do

14 if i is Non-Scalable then

15 if TotalFlow = ∞ then

16 Pi ← � T askLoadi

min
∀s

T askLoads
	;

17 end

18 else

19 Pi ← �TaskLoadi ∗TotalFlow	;
20 end

21 end

22 else

23 Ri ← T askLoadi

max
∀s

T askLoads
;

24 end

25 end

26 return
−→
R ,
−→
P ;

The value of slice should be tailored to the specific streaming application. Our rule of thumb is
to try small values (0.1, 0.2, etc.) and select the one that minimizes the profiling effort in the next
step. Section 6.4 will shed more light on the parameter selection with real experiments.

It is also worth mentioning that in line 3, we omit the process of identifying dominance rela-
tionship for the sake of simplicity. Actually, there are some breadth-first searches starting from
each logic-dependent operator to examine which operators are affected logic-dependent succes-
sors. In summary, the algorithm sequentially evaluates the operator located at the head of queue
with regard to the status of its predecessors (each operator maintains a HashSet of all its status-
undetermined predecessors for quick location and removal). If an operator has all its predecessors
marked as either logic-dependent or already dominated, that is, its HashSet of status-undetermined

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:11

Fig. 6. An example of platform capability profiling in operation.

predecessors is emptied while this operator dequeues, then it then should be identified as domi-
nated and its successors are added to the tail of queue for further evaluation.

Algorithm 1 also has a computational complexity of O (n) with the worst case being O (n ∗
(d−avд + 2)), in which n is the number of operators and d−avд is the average vertex in-degree in the
topology graph. The most time-consuming step lies in line 3 as each operator in the topology may
be repeatedly visited, at most, its in-degree times to determine whether it has been dominated by
logic-dependent operators or not. Besides line 3, the algorithm body traverses the topology graph
only twice and all the required input can be collected with simply one round of profiling.

4.2 Platform Capability Profiling

Unlike the previous step, which requires only a small data stream to probe application features,
the platform capability profiling requires the message generator to produce a continuous data
stream that is large enough to stress the streaming application. Given sufficient profiling data, the
configuration of the application is changed through a trial-and-error process to determine the real
capability of DSMS as well as its underlying infrastructure. The resulting configuration reveals a
reasonable choice of resource partition in this platform where it is capable of handling a relatively
large stream without violating the latency constraint.6

As shown in Figure 6, each configuration trial is first evaluated in terms of system performance
variation. Specifically, changes in throughput and latency are collected and reported to the monitor
module, which can be used to identify if the new configuration improves the resource utilization.
Configuration changes that have a negative impact on the system performance are discarded in
this phase.

Based on the result of performance evaluation, the profiler applies changes to the configura-
tion according to Algorithm 2 and generates a new one for the next round of profiling. The new
configuration not only targets throughput improvement, but also aims at maintaining the balance
between data source and data sinks. If it failed to do so, then an overly powerful data source may

6Different applications may have different preferences with regard to their desirable performance. Though the final decision

is left up to the application developer, as a default the profiler favours better throughput on the condition that the system

still meets the pre-defined latency requirement.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:12 X. Liu et al.

Fig. 7. Balancing data source and sinks in platform capability profiling. The vertical axis represents the pro-

cessing ability ordering by throughput. The horizontal axis denotes the system components we are concerned

about.

cause severe backlogs in data sinks and lead to a higher system latency, while an inefficient data
source starves the following operators and encumbers the overall throughput. As a result, tasks
are alternatively added to the data source or to data sinks to strengthen their processing abilities,
and the search for the desired configuration leads the application to its performance limit where
neither enhancing data source nor data sinks improves it.

Figure 7 illustrates the aforementioned scaling process with an example. At each edge of the
figure, the solid short lines with labels indicate different configurations for data source and data
sinks, while the dashed lines in the middle represent the overall system performance resulting
from the configurations on each side. Different configurations lead to various processing potentials
in terms of throughput and latency, which are shown in the right corner. Thus, short lines are
all ranked by throughput with different heights in the figure, and the curves connecting them
with numbers denote the potential throughput variances that resulted from different configuration
changes by applying Algorithm 2. At first, the system is configured with Source0 for data source
and Sink0 for data sinks, where Source0 indicates that the data source is able to pull a data stream at
a throughput of X0, while Sink0 with (Xsink0,Ycon) means that data sinks under this configuration
are capable of dealing with a stream of size Xsink0 within the user-specified latency constraint
Ycon .

Given a particular platform, there should be a configuration that delivers the best performance
in this profiling environment, indicating that the data source and data sinks have been properly
coordinated. As denoted by the top two short lines in Figure 7, the data source Sourcecap and
data sink Sinkcap represent such ideal configuration that the profiler aims to achieve at the end
of its operation. Initially, the data source Source0 is less powerful than the data sink Sink0. Thus,
the system performance P0 is confined at (X0,Y0), where X0 is decided by Source0 and Y0 < Ycon ,
because the data sinks are underutilized. After detecting the latency margin, the profiler first scales
up data source to Source1, causing bottleneck shifts to data sinks Sink0. This time the performance
P1 is limited at (Xsink0,Y1) where Y1 > Ycon , since some backlogs have already been accumulated.
Afterwards, the profiler enhances the ability of data sinks from Sink0 to Sink1, improving the
performance from P1 to P2 = (Xsink1,Y2). However, as indicated byY2 > Ycon , the last modification
is still inadequate and another sink scaling is needed in the next round.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:13

ALGORITHM 2: Generation of a New Configuration under the Round-Robin Policy.

Input: T : Topology throughput

Input: α : Threshold for triggering reconfiguration

Input: Tb : Best throughput record

Input:
−→
R : Ratio of parallelism of each operator

1 if Last change increased T then

2 Tb ← T ;

3 if Latency constraint is not met then

4 foreach operator do Add tasks according to
−→
R and the operator’s position in the topology;

5 end

6 else Increase number of tasks of source by 1;

7 end

8 else if Last change did not significantly change T † then

9 if Last change enhanced data sink then

10 Increase number of tasks of source by 1;

11 end

12 else if Last change enhanced data source then

13 foreach operator do Add tasks according to
−→
R and the operator’s position in the topology;

14 end

15 else if Last change throttled the data source then

16 if latency requirement has been met then

17 Terminate the profiling;

18 end

19 else Increase throttle strength;

20 end

21 end

22 else if Last change decreased T then

23 if T < α ∗Tb then

24 Return the system to the configuration where the best performance is observed;

25 Throttle the data source;

26 end

27 else if Last change enhanced data sink then

28 Increase number of tasks of source by 1;

29 end

30 else if Last change enhanced data source then

31 foreach operator do Add tasks according to
−→
R and the operator’s position in the topology;

32 end

33 else if Last change throttled the data source then

34 Decrease throttle strength;

35 end

36 end

†We adopt a Two Sample T-Test to determine whether a throughput change is significant or not; more details are given in

Section 6.1 as a part of experiment setup.

Scaling up data source and data sinks works by adding new tasks to operators that need to
be further parallelized, but it also raises a question of how to map the updated task graph to
the underlying machines to achieve better resource utilization. This is also known as the task

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:14 X. Liu et al.

placement and scheduling problem. There are several policies available to decide the distribution
of tasks across the platform, and certain applications may require a particular policy to suit a very
specific need (e.g., assigning a particular task to a particular machine due to licence restrictions).
We therefore design the platform capability profiler to enable scheduling policies to be plugged
in so it can be used in conjunction with various scheduling heuristics with different optimization
targets, such as minimizing inter-node communication (Aniello et al. 2013; Xu et al. 2014), reducing
the average tuple processing time (Li et al. 2015), and being resource-aware to ensure the capability
of each task to handle its task load (Peng et al. 2015). Since the focus of this work does not lie in task
placement and scheduling, we introduce our profiling approach in tandem with the widely adopted
round-robin policy7 and apply it in a platform with homogeneous computational resources for ease
of presentation. The round-robin policy is particularly suitable for homogeneous platforms as tasks
are evenly distributed among available machines to enable fault-tolerance and load-balancing.

Algorithm 2 shows the interplay between performance evaluation and configuration generation
carried out by the profiler under the round-robin policy. Scaling data sources is a relatively light-
weight operation: it only requires the number of tasks for the data source to be increased by 1, so
the application has one extra task pulling data from the message queue and thus increasing the
input rate. However, decision about increasing the parallelism for a data sink operator depends
on the type of operator and its position in the topology. For example, an operator should keep its
number of tasks unchanged if it is a non-parallel operator, or if it is non-scalable dominated by
logic-dependent operators as its input stream tends to be steady during the profiling process. As

for other types of operators,
−→
R indicates the extent of enhancement for each operator.

Nevertheless, not every scaling effort, especially those applied for data sinks, can guarantee
improvements. The reason why scaling data sinks is even more difficult than scaling data sources
is that it has to exhaust current resources for additional computation and coordination. Therefore,
to meet the latency constraint, our profiler performs a third operation on configuration, source

throttle, which limits the size of input stream by controlling the amount of data that is allowed to
sojourn in the system.

The complexity of computation required for configuration generation is constant. However,
the profiling process that evaluates the effectiveness of a new configuration is relatively time-
consuming, since performance measurement must wait until the application is stabilized. To ex-
amine the number of profiling rounds required in the worst case, we regard Algorithm 2 as a
search algorithm that explores a vectored value space, with each dimension confined by the actual
parallelism degrees that can be seen in the ideal configuration. Given the fact that every three

consecutive profiling efforts can increase the total number of used tasks at least by ‖−→R ‖1 through
data sink enhancement (except for consecutive source throttles, which is rare), and that assigning
excessive parallelism degree to an operator would harm the application performance, it is intu-

itive to deduce a conservative estimate that in the worst case there will be no more than 3 ∗ nMaxp

‖−→R ‖1
rounds of profiling. In the expression, n is the number of operators in the topology, and Maxp

represents the maximal parallelism degree among all the operators. However, Maxp is unknown
before the actual profiling, but it can be approximated in practice by the number of threads able
to run simultaneously in this particular platform (by multiplying the number of available cores by
the number of thread(s) per core).

7http://grokbase.com/t/gg/storm-user/132fh5qyve/recommendations-for-setting-num-isolated-machines-num-workers-

parallelism-hint.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

http://grokbase.com/t/gg/storm-user/132fh5qyve/recommendations-for-setting-num-isolated-machines-num-workers-penalty -@M parallelism-hint

A Stepwise Auto-Profiling Method for Performance Optimization 24:15

4.3 Operator Capacity Profiling

The previous step of profiling divided the streaming application into two parts (data sources and
sinks), of which the parallel configurations of operators are collectively adjusted based on the over-
all performance of the system. Such coarse modifications may not be accurate enough to achieve
the targeted configuration. Therefore, in the third step, profiling is carried out at operator level
through the individual evaluation of performance of each operator. The goal of this step is to
achieve finer granularity of performance tuning.

Operator capacity, which is formally defined in Equation (2), is used to quantitatively evaluate
the degree of utilization of operators in data sinks. In the equation,Operator_latency is the average
time that a single datum would spend in this operator over a specific time period. The length of
such time period is calledWindow_size and the amount of data processed in this period is denoted
by Executed_load . Thus, capacity represents the percentage of the time in the observation time
window that the operator spent executing inputs. The closer to 1 this value is, the more likely the
operator is the bottleneck in our topology:

Capacity =
Operator_latency ∗ Executed_load

W indow_size
. (2)

This step utilizes the same profiling environment used in the previous step. However, besides
overall performance metrics such as throughput and latency, the profiler in this stage also collects
the capacity information from each operator for fine-grained evaluation. The profiling strategy
also resembles the previous one: the performance evaluation phase sheds light on the system sta-
tus and the possible bottleneck, and the previous configuration change is revoked if it causes per-
formance degradation. However, this process differs from the previous step in that it has only one
operation, which is increasing the number of tasks by 1 for the operator that has the highest capac-
ity and has not been enhanced nor revoked. If there is no performance improvement obtained from
enhancing the operator with the highest capacity, then the operator that has the second-highest
capacity is tested in the next round and so on.

There are two stopping conditions for the profiling. The first is when there are consecutive
revocations observed, indicating that recent scaling-up efforts on candidate operators have failed.
The second condition is when all the measured operator latencies approach the minimal processing
latency MinLp by a factor k . We evaluate the effect of diverse values of k in the performance of
the profiling later in Section 6.4.

4.4 Recalibration Mechanism

The application of the above three profiling steps yields a specific parallel configuration that builds
a relation between provisioned resources and performance metrics. However, such relation is per-
ceived to be volatile, since the performance under the same configuration may vary and the re-
sulting configuration may need to be promptly modified due to the live changes that happen to
the streaming application or platform. This section therefore discusses the recalibration mecha-
nism, which repeats the profiling process when necessary to keep the configuration and operator
profiling up-to-date with minimal adjustment cost.

In general, recalibration is triggered by any three types of changes: (i) resizing of DSMS, which
leads to a new platform to be profiled after the infrastructure layer is dynamically scaled; (ii)
re-deployment of the application, resulting from the alteration of application topology and the
manipulation of some critical parameters that would greatly affect the application behaviour; and
(iii) data-dependent variation, an uncontrollable factor related to the characteristic of workload,
causing performance to vary even if the configuration remains unchanged.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:16 X. Liu et al.

For the first two causes, the recalibration decision is straightforward. If the platform or applica-
tion turn into a state that has not been previously profiled, then all the profiling steps are repeated.
However, the process is more challenging when it comes to dealing with data-dependent variation,
as all the changes are independent of the platform and application. We can safely assume that all
data elements within the same stream are of the same type, but the time and space complexity of
execution may vary along with the changing element size or the density of information contained.
The Sentence Splitter, in the word count topology, is a typical example to show the effect of data-
dependent variation: its process latency and relative size of output stream depend on the average
length of incoming tweets.

To deal with such variation, the recalibration mechanism requires a monitoring system to over-
see the degradation of performance during runtime. It continuously monitors the length of the
message queue, which indicates the capability of application to handle a certain level of through-
put that previously demonstrated in the profiling phase, and the system latency, which examines
if the user-specified latency constraint is still satisfied. To reduce the frequency of adjustment,
we adopt a threshold-based method that postpones any recalibration action until the monitored
values have exceeded the predefined threshold for a specific period of time.

5 SYSTEM IMPLEMENTATION

The architecture of the stepwise profiling system, as shown in Figure 4, consists of two main
parts—the profiling environment and the stepwise profiler.

The setup of the profiling environment has been briefly introduced in Section 4. More specifi-
cally, the Profiling Message Generator8 is a Java program that reads the workload file on demand
to emit a particular size of profiling stream. The Message Queue connecting the streaming appli-
cation to the Profiling Message Generator is built with Twitter Kestrel,9 a distributed queueing
system that enables controllable message buffering. Developers could make use of the Thrift in-
terface provided by Kestrel to retrieve the length of message queue and determine whether the
streaming application has been overwhelmed by the profiling data.

As a specific DSMS was needed to enable the implementation and evaluation of the prototype,
Apache Storm was chosen. This is because it is an open source software (and thus has all the
source code available and detailed on-line documentation), and provides a built-in metric system
and external configuration reader that facilitate the implementation of the stepwise profiler.

Figure 8 describes the integration of the profiler prototype into Apache Storm. The Stepwise
Profiler module in the grey box are DSMS-independent, as it only interacts with other components
of the architecture to make profiling decisions. Therefore, it is implemented as a stand-alone Java
Program.

The other modules of the architecture interact directly with the DSMS to collect information
or apply changes, thus the implementation of these modules are DSMS-dependent. The Metric
Reporter component utilizes Storm’s built-in metric system and the associated RESTful interface
to collect performance information and publish results. Such metrics are then periodically sent to
MongoDB10 to facilitate tracking of performance changes. The Monitor Module,11 implemented as
a Java program, inquires the MongoDB for the latest system status and reports it to the Stepwise
Profiler for decision-making. In this process, some performance metrics, like complete latency
(average time taken by a tuple and all its offspring to be completely processed by the topology),

8https://github.com/xunyunliu/MessageGenerator.
9https://github.com/twitter-archive/kestrel.
10https://www.mongodb.com/.
11https://github.com/xunyunliu/MonitorModule.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

https://github.com/xunyunliu/MessageGenerator
https://github.com/twitter-archive/kestrel
https://www.mongodb.com/
https://github.com/xunyunliu/MonitorModule

A Stepwise Auto-Profiling Method for Performance Optimization 24:17

Fig. 8. The integration of the profiler prototype into Apache Storm.

number of data emitted, and operator capacity can be directly used in the stepwise profiler. Some
metrics, however, require certain post-processing in the Monitor Module. For example, there is no
default definition for throughput among the built-in metrics. Thus, to avoid ambiguity, the Monitor
Module calculates the overall throughput of a streaming application based on the observed number
of acknowledgments or emitted data per unit of time, depending on whether the application adopts
reliable message processing or not.

We also utilize some useful features of Storm in the process of generating and applying new
configurations. Specifically, Storm not only supports reading parallelism setting of operators from
an external configuration file, but also provides a command line tool (Storm API) to manage the
topology with additional operational parameters. The stepwise profiler thus makes use of the Con-
figuration Modifier component, which is implemented as a script file, to pack up all the profiling
decisions in a deployment configuration file, and then invokes the command line tool to submit
the application with the updated deployment scheme for the next round of profiling. The round-
robin scheduler guarantees that tasks are evenly distributed across Worker Nodes and that load is
equally distributed among machines.

Another aspect relating to implementation is the management of operator states during the
scaling-up process. We do not address dynamic stream rerouting and live state migration, since
the Configuration Modifier relies on the rebalance command to apply any deployment changes.
This command, as a built-in Storm functionality, essentially pauses the application during the
redeployment and then restarts it from scratch with the new configuration, following the so-called
Pause and Resume protocol (Heinze et al. 2014a). As our current prototype treats stateful operators
the same way as stateless operators in terms of scaling, the management of operator states is not
transparently handled by the profiling framework. Therefore, it is required that stateful operators
preserve their states at the application level when the rebalance command is triggered, and these
operators should also be initialized with the previous states when the application is restarted.
However, there are some advanced mechanisms proposed in the literature that enable application-
agnostic state management and interruption-free operator scaling, which is discussed in
Section 7.

6 PERFORMANCE EVALUATION

We have conducted three different sets of experiments to validate the effectiveness of our
prototype.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:18 X. Liu et al.

Fig. 9. Structure of the synthetic Micro-benchmark topologies.

(1) The first experiment presented in Section 6.2 evaluates whether the stepwise profiling
effectively applies to a variety of streaming applications and if it fulfills the other goals
discussed in Section 2.

(2) The second one in Section 6.3 assesses the scalability of our prototype and showcases its
runtime overhead under relative large test cases.

(3) The last experiment in Section 6.4 investigates the effect of different parameters on the
profiler performance, based on which we suggest default preferences.

6.1 Experiment Setup

The experiment environment is set up on a private cloud running OpenStack. The environment
consists of three IBM X3500 M4 machines, and each machine is equipped with 2× Intel Xeon
E5-2620 Processor (6 core@2.0GHz), 64GB RAM and 2.1TB HDD. The virtual cluster deployed
on the physical environment is composed of a control machine, a ZooKeeper node, and several
processing nodes. The first two nodes are “m1.large” (4 VCPU and 8GB RAM), while the rest of the
processing nodes are “m1.medium” (2 VCPU and 4GB RAM per machine). The control machine
host the Stepwise Profiler, Profiling Message Generator, and the Message Queue components of
the architecture to avoid possible interference to the profiling result.

6.1.1 Test Applications. We adapt six streaming topologies as our evaluation applications.12

These include three synthetic topologies (collectively referred to as Micro-benchmark) and three
real-world streaming applications: Word Count (WC), Synthetic Word Count (SWC), and Twit-
ter Sentiment Analysis (TSA). All applications are configured with acknowledgments enabled to
track the complete latency, and they process the same type of workload to calculate compara-
ble throughput. The profiling stream used for performance test is recursively generated from a
single workload file, which contains 159,620 tweets in JSON format collected from 24/03/2014 to
14/04/2014. In addition, these applications are carefully tuned to avoid out-of-memory crash and
other failures due to insufficient resource allocation, so the only potential consequence of improper
configuration is suboptimal performance, rather than abrupt termination of the application.

Micro-benchmark: the micro-benchmark topology is synthetically designed to evaluate how the
stepwise profiler generalises to different topology structures. As shown in Figure 9, it covers three
common structure patterns: Linear, Diamond, and Star, where an operator has (1) one-input-
one-output, (2) multiple-outputs or multiple-inputs, and (3) multiple-inputs-multiple-outputs,
respectively.

In addition, the execute method of each operator is implemented in three different patterns to
reflect diverse time-space complexities. Some operators are (1) CPU bound, as they invoke a random

12In the following section, we use application and topology interchangeably to refer to the streaming logic developed on

Apache Storm.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:19

Fig. 10. Structure of the Twitter Sentiment Analysis (TSA) topology.

number generation method Math.random() 10, 000 times for each tuple received. Some are (2) I/O

bound with only a JSON parse operation applied on the incoming tuple, so they spend more time
on waiting for I/O operations rather than actually processing the current data. The rest of the
operators are (3) Sojourn time-bond, which sleep for 5ms upon any tuple receipt. These operators
are introduced to mimic the cases where an external service is requested to complete the tuple
transaction. Consequently, they demand almost no CPU and memory usages on the execution
platform, but still consume a substantial sojourn time for each incoming tuple to be processed.

All these operators have a function implemented to read the operator selectivity13 from the ex-
ternal configuration file. Higher selectivity can be specified to produce saturated network usages,
so I/O bound operators could be overwhelmed by large internal streams.

Word Count and Synthetic Word Count: the Word Count topology is illustrated in Figure 3. The
Synthetic Word Count topology adds a Waiting operator (a bolt14 in Storm’s terminology) between
the Kestrel Spout and the JSON Parser, where each incoming tuple is kept for 1ms before being
sent to the next operator. Therefore, WC and SWC are actually two different implementations for
the same streaming application.

Twitter Sentiment Analysis: we adapted this topology from a mature open-source project hosted
on Github15 with the structure shown in Figure 10. It has 11 bolts constituting a tree-style topology
that has 8 stages in depth. The processing logic of this application is straightforward: once a new
tweet is pulled into the system through Kestrel Spout (Op1), it is first stored by a file writer (Op2)
and examined by a language detector (Op3) to identify which language it uses. If it is written
in English, then there is a sentiment analysis bolt (Op4) that splits the sentence and calculates
the sentimental score for the whole content using AFINN,16 which contains a list of words with
their pre-computed sentiment valence from minus five (negative) to plus five (positive). There are
also several bolts to count the average sentiment result (Op5, Op6) and to rank the most frequent
hashtags occurring over a specific time window (Op7 ∼ Op11).

6.1.2 Evaluation Methodology. We use throughput and complete latency to quantitatively eval-
uate the performance of streaming applications. Higher monitored throughput indicates higher
performance potential, as long as the complete latency satisfies the desired target. In other words,
if a streaming application has demonstrated throughput T in the profiling environment, we can
confidently assume that it has ability to process any throughput T ′ < T without violating the la-
tency constraint, unless the profiling knowledge needs to be recalibrated. Therefore, to probe the
maximum sustainable throughput, the profiling environment feeds the applications with large in-
puts, until the performance hits its highest stable point before recording it as the observed value.

The measurement of performance metrics first requires the test application to be deployed on
the execution platform. Apart from complying with the generated configuration, we also set the
number of workers to one per machine and the number of tasks to be the same as the number of

13The selectivity is defined as the ratio between the number of output tuples produced and the number of tuples consumed

by this operator.
14Operators in Storm are called spouts—if they are data sources—or bolts otherwise.
15https://github.com/kantega/storm-twitter-workshop.
16http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

https://github.com/kantega/storm-twitter-workshop
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id$=$6010

24:20 X. Liu et al.

Table 2. The Parameter Settings Used by the Stepwise

Profiler in Evaluations

Parameters Values

Latency constraint (Ycon) 500 ms
Task load unit (slice) 0.3
Stopping coefficient (k) 2
Threshold for triggering reconfiguration (α) 0.9

executors, which conforms to the recommendation of the Storm community.17 All the topologies
run for 10min to enable sufficient stabilization, and then performance data are collected every 30s
for 10min, forming an array of 20 observations on throughput and latency. These settings were
chosen because we observed that the fluctuation among the average results of repeat experiments
did not exceed 3%, and the Lilliefors Test does not reject the null hypothesis that the observations
on throughput are normally distributed (at the 5% significance level). However, other applications
may require longer time to reach a stable state, or a larger monitoring interval to avoid drastic but
periodic throughput variation.

As we have collected an array of throughput metrics in each profiling round, the significant
change mentioned in Algorithm 2 can be determined by a Two Sample T-Test (at the 5% signifi-
cance level) to determine if there is statistically significant difference between the performance of
previous and new configuration.

For completeness, Table 2 summarizes the parameter settings used for setting up the stepwise
profiler in our evaluation.

6.1.3 Comparable Methods. We compare the stepwise profiling prototype with two existing
scaling-up approaches: the threshold-based method and Stela (Xu et al. 2016).

The threshold-based method adjusts the parallelism hint of each operator based on its monitored
capacity as formulated in Equation (2), in contrast to those in the literature that set up thresholds
over the CPU utilization of worker nodes (Heinze et al. 2014b; Gulisano et al. 2012). The scaling-up
threshold in our experiment is set to be 0.8 and we reduce the capacity of congested operators by
gradually increasing their parallelism. In this sense, it may take several rounds to complete the
scaling-up process: the application is deployed with no parallelism configured18 at the beginning.
In the following rounds, the most overloaded operator will be provided with an extra task in an
attempt to rectify the congestion and optimize performance.

Stela scales up the streaming applications with the same goal of optimizing post-scaling
throughput. In contrast to the threshold-hold method that examines only the operator capacity for
bottleneck detection, Stela prioritizes those congested yet influential operators in the scaling-up
process by calculating the ETP (Effective Throughput Percentage) metric (Xu et al. 2016). Further-
more, it allows the parallelism degree of multiple operators to be adjusted in a single monitoring
round, thus greatly reducing the time span of scaling-up process. However, Stela is initially de-
signed for on-demand elasticity, hence some changes are required to make it comparable with our
approach:

(1) The scaling-out process is omitted as we intend to optimize the application performance
on a pre-configured cluster. All infrastructural resources are made available to Stela from
the beginning of the scaling-up process.

17https://storm.apache.org/documentation/FAQ.html.
18By default, Apache Storm initializes each operator in the topology with one task for execution.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

https://storm.apache.org/documentation/FAQ.html

A Stepwise Auto-Profiling Method for Performance Optimization 24:21

(2) A single monitoring round of Stela corresponds to an on-demand scaling request in its
original form, which may involve multiple scaling-up iterations. During each iteration,
Stela calculates the ETP for all operators and assigns a new task to the operator with the
highest ETP. Before proceeding to the next iteration, the table of ETP is updated with
projected values that estimate the consequence of scaling, such as the projected input rate
and the processing rate of the targeted operator.

(3) Since the estimation of ETP is prone to error propagation, we limit the maximum number
of scaling-up attempts in a monitoring round tom, which is the number of worker nodes
available at the infrastructure level. In this way, the efficacy of the scaling algorithm is
assured as the table of ETP is revised with monitored data everym iterations; and the risk
of over-scaling is controlled, since each machine will be assigned with no more than one
new task in a single monitoring round.

6.2 Applicability Evaluation

In the applicability experiment, all the topologies are executed in six worker nodes. We configured
the micro-benchmark topologies with different resource complexities to examine how application
diversity affects the performance optimization process. Specifically, the Linear topology incorpo-
rates only CPU-bound operators so the whole application is bound by available CPU resources;
while the Star topology consists of only I/O bound operators, causing its performance to be bound
by communication capability.19 The Diamond topology, on the other hand, is a hybrid streaming
application that includes all sorts of operators (1 CPU bound, 1 I/O bound, and 2 Sojourn time-
bound) in the intermediate tier, making its bottleneck more difficult to identify and resolve in the
scaling-up process.

The results in Figure 11 show that the stepwise profiler successfully scales up the targeted
topologies. In particular, the Linear topology reaches its maximum throughput at 1876 with the
parallelism set as (1, 2, 2, 2),20 which is 95.7% higher than its initial throughput performance
yielded by (1, 1, 1, 1). It took four rounds for the scaling-up process to converge: the stepwise
profiler tried the configuration of (1, 3, 3, 3) at round 3, but it then rejected such configuration
change due to the observed performance degradation. Note that the operator capacity profiling is
entirely omitted in this scaling-up process, as the measured operator latencies have all fallen into
the vicinity of the monitored MinLp by a factor of 2.

Being I/O intensive in nature, the Star topology requires much higher parallelism settings to
enable satisfactory performance, which consequently leads to a longer scaling-up process. In our
evaluation, the scaling-up process took six rounds to finish, with the parallelism finally set as
(3, 3, 48, 24, 24) delivering 64% higher throughput than the first round. Thanks to the homogeneity
of operator implementation, there is no need to fine tune the operator capacities as the stopping
condition on latency has been met.

The Diamond topology, in contrast, spent three rounds in the third step to further scale up the
I/O bound operator (Op3). During the process of platform capability profiling, stepwise profiler
successfully determines the right parallelism for CPU-bound and Sojourn time-bound operators;
however, it underestimates the number of tasks for Op3 and causes it to be the throughput bottle-
neck. The reason of insufficient scaling is that Equation (1) made a conservative decimal conversion
by using slice of 0.3, which prevents Op3 from scaling more than four times faster than the other
operators. We will shed more light on the effect of parameter selection in Section 6.4.

19For I/O bound topologies (e.g., Star), we set Ycon to 100 ms to reflect stricter timeliness requirement.
20From left to right, each number corresponds to the number of tasks of each operator in the Linear Topology.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:22 X. Liu et al.

Fig. 11. Scaling up testing applications on six processing nodes, the X axis represents a series of profil-

ing rounds and the Y axis compares the throughput resulting from different configurations. In each profil-

ing round, we use three boxplots that each contain 20 readings of throughput to denote the observation

variances.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:23

In addition, by interpreting the scaling-up process of real-world streaming applications, we con-
clude that our method is consistently better than the other two scaling approaches in the following
three aspects. First, stepwise profiling exploits the inherent feature of a streaming application and
thus has a more reasonable starting point of profiling comparing to the other two baseline meth-
ods, which by contrast determine the initial configuration only based on the topology structure.
Figure 11 illustrates that the application feature profiling for WC, SWC, and TSA improves the
performance by 45%, 21.1%, and 25% at the beginning, respectively.

Second, as platform capability profiling collectively adjusts the parallelism hints for a set of
operators, it significantly enhances the performance gains obtained from the first few profiling
rounds. On average, the relative performance improvement observed from the first four rounds
in our method is 2.48 times as large as that of Stela, and 11.63 times compared to that of the
threshold-based method. Besides, despite having the ability to tune multiple parallelism hints in
a single round, Stela’s estimation-based algorithm could lead to incorrect scaling decision, for
example, it added new tasks to logic-dependent operators and caused performance degradation at
round 10 in Figure 11(f). To make things worse, there is no reversal mechanism to rollback the
wrong move.

Finally, the stopping condition introduced in Section 4.3 greatly limited the number of profiling
rounds. Specifically, stepwise profiling stops trying new configuration in TSA, because there are
successive revocations that show increasing parallelism hint no longer benefits the performance.
In WC and SWC, the profiler execution terminates when the latencies for each bolt dropped into a
range of (0, 2∗MinLp], which indicates that the application has been sufficiently scaled up. In the
end, our approach is 34.1%, 40.1%, 31.9% better than the best alternative in terms of the throughput
resulted from the final configuration, respectively.

With the performance information profiled, the quality of different topology implementations
in terms of their performance potentials can be easily observed. In this case, SWC is consistently
worse than WC as the former implementation only reaches 86.8% throughput of the latter and it
takes more effort (9 rounds vs. 5 rounds) to probe a reasonable configuration.

6.3 Scalability Evaluation

We explore the scalability of our stepwise profiling prototype in two dimensions. The first
dimension is topology complexity, which examines how the increasing number of operators in
the topology affects the scaling-up process. The other dimension is platform size, which checks
if the prototype is able to deliver a reasonably higher post-scaling performance using more
resources. Meanwhile, we also compare stepwise profiling with Stela in terms of the minimal
resources needed to reach a specific performance target.

In the first experiment, we run the Linear topology with various types of operators on six worker
nodes. The topology depth is further extended to 6, 8, and 12 to construct a more complex struc-
ture. Results in Figure 12(a) show that increasing the topology chain leads to a longer operator
capacity profiling process, but the overall profiling effort does not scale linearly with the number
of operators. This is because the monitored MinLp also increases along with the topology com-
plexity and contributes to the timely termination of the profiling process. In fact, we observed
that the stopping condition on latency is satisfied by most operators at the end of the platform
capability profiling, and only I/O bound operators demand further adjustment of capacity as their
MinLp are relatively small and hard to approach. This observation enables the conclusion that the
parameter selection process is application-dependent and a higher k should be set for I/O bound
topologies.

Additionally, this experiment showcases that the increasing complexity of target application
compromises the performance gain from profiling, with the monitored improvement being 33.5%,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:24 X. Liu et al.

Fig. 12. Scalability evaluation of the stepwise profiler. The X axis represents a series of profiling rounds and

the Y axis compares the throughput resulting from different configurations.

24%, 20.5% in the three test cases, respectively. Therefore, a larger platform is required for complex
streaming topologies to obtain satisfactory performance.

In the second experiment, we run the Word Count topology on 6, 10, and 14 worker nodes,
respectively. Note that by using 14 worker nodes we can still guarantee that one virtual CPU
corresponds to a physical core to avoid the interference of CPU overbooking. The results in Fig-
ure 12(b) demonstrate that the application features profiled in the first step, that is,MinLp and RSS ,
are nicely maintained on larger platforms; therefore, the process of platform capability profiling is
accordingly extended to provide higher parallelism for different operators. However, the stepwise
profiler is not able to achieve linear growth of performance using more resources. This is because
other factors, such as task location and concurrency settings, also influence the throughput out-
come, but they are not fine-tuned by the profiler due to the hardness of modelling.

Using WC as the test topology, we also applied Stela and stepwise profiling on an increasing
number of nodes, from 2 to 14, to determine the performance limits of the topology given different
resources. Both methods were executed with the same iterations to ensure fairness, and the results
of scaling shed light on the minimal resource provision needed for the test application to reach a
specific throughput target.

Figure 13 shows that the stepwise profiling is able to reduce resource usage by up to 57.1%. For
example, stepwise profiling can achieve a target of 6,000 tweets processed per second using only
four nodes. On the other hand, Stela suggests eight nodes to process such stream without breaking
SLA, which results in a significant resource wastage.

Additionally, it took 200min for the stepwise profiler to complete the scaling-up process of WC
on 16 machines (2 for control and coordination and 14 for execution). Given that a configuration
trial in each round runs for 20min, and that 10 configurations are evaluated, the overhead incurred
by the profiling algorithm in the whole process is negligible.

6.4 System Parameters Evaluation

In this experiment, we evaluate the influences of three parameters in the performance of stepwise
profiler. These include the user-specified latency constraint Ycon , the task load unit slice , and the
stopping coefficient k . In particular, TSA is executed on four processing nodes. When a particular

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:25

Fig. 13. Relationship between the throughput target and required resources to handle it without latency

violation.

Table 3. Evaluated Parameters and Their Values Default

values are shown in bold.

Parameters Values

Latency constraint (Ycon) 300ms, 500ms, 700ms
Task load unit (slice) 0.1, 0.3, 0.5
Stopping coefficient (k) 1.5, 2, 3

parameter is being examined, the others were set to their default values. Table 3 describes the
evaluated and default values for each parameter.

Results show that relaxing Ycon does not necessarily increase the throughput. In fact, it en-
courages the profiler to try further data source scaling operations in the second profiling step,
checking if the bottleneck lies in insufficient data supply. As shown in Figure 14(a), the third data
point marked with a circle denotes the operation that scales up the data source, but it is revoked
because the overall throughput is impaired by this change. On the other hand, the throughput
would be significantly affected if Ycon were set to an overly small value. As indicated by the third
data point marked with a square, our method has to throttle the data source at the end of the sec-
ond profiling step to meet the latency requirement, and the following rounds in the third step do
not compensate the performance degradation due to the strict latency constraint.

The behaviour of the platform capability profiling mainly depends on the value of slice . When
slice increases from 0.3 to 0.5, both the starting point and the performance gain from scaling are
worse than the default case, reaching only 90.9% and 79.7% of the default case performance, re-

spectively. This is because, in this case,
−→
R is no longer able to describe the proportion of different

operators, which in turn causes heavy bottleneck in bolts in the whole topology. By contrast, a
value of slice that is too small exaggerates this proportion and makes each scaling attempt more
extreme. Data points marked with squares in Figure 14(b) show that, even though the profiler
managed to improve the performance of the starting point against the normal case, the follow-
ing scaling trials in the second step all failed because of over-scaling—too many tasks were being
added each time.

Variation of the parameter k mainly affects the number of rounds in the operator capacity
profiling. Figure 14(c) shows that, when k changes from 2 to 3, the whole third step of profil-
ing is omitted at round 7, because each operator satisfies the stopping condition, though only a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:26 X. Liu et al.

Fig. 14. Influence of different parameters on the performance of stepwise profiling. For better readability,

we only plot the average of throughput in each profiling round.

suboptimal configuration is obtained in this case. On the contrary, when k is decreased to 1.5, more
operators are involved in the third step, which causes a longer series of performance fluctuation.
Note that more rounds of profiling in the third step do not guarantee a better throughput due to
the nature of greedy heuristics.

7 RELATED WORK

In summary, our work introduces a controlled profiling environment allowing evaluation of dif-
ferent configurations, with the objective of finding and employing a tailored deployment plan to
capture relevant characteristics of both the application and target execution platform. Since our
research goal is to achieve performance-oriented deployment for applications on operator-based
DSMS, and the adopted method falls into the broad scope of application profiling, this section re-
ports relevant works in these two fields—performance-oriented deployment and application pro-
filing. There is also a line of work applicable to the previous generation of DSMS that focused
on tuning performance without changing the semantic of a streaming application. Therefore, we

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:27

Fig. 15. Three processes of deploying a streaming application on the operator-based DSMS running in a

cloud and cluster environment. Text in italic describes the interrelation between them.

succinctly review them and summarize how performance optimization is achieved on other types
of DSMS.

7.1 Performance-Oriented Deployment

As shown in Figure 15, there are three tightly coupled processes involved in streaming application
deployment once the target cluster or cloud environment has been provisioned: (i) task paralleliza-

tion, which involves decision of the parallelism degree for the logic DAG, such that each abstract
operator is translated into a certain number of tasks to conduct real data operations; (ii) task alloca-

tion & scheduling, which involves allocation and scheduling of tasks among participating compute
nodes; and (iii) parameter tuning, which concerns fine-grained adjustment of available parameters
for better coordination of the application and the platform.

Only a handful of works investigated the task parallelization problem. Researchers in
IBM (Schneider et al. 2009, 2012; Gedik et al. 2014) tried to automate this process using a com-
piler and runtime system that is capable of identifying and levering potential data-parallel regions
for applications on System S (Jain et al. 2006). But instead of altering the parallelism to improve the
application performance, their work mainly focused on addressing the safety challenge related to
parallelization, which has already been handled by the implementation of state-of-the-art DSMSs.
Fischer et al., who abstract the streaming application as a black box with an unknown perfor-
mance function, proposed another similar work that regards the task parallelization as only a part
of parameter tuning (Fischer et al. 2015). Though the adopted Bayesian optimization method has
demonstrated its effectiveness through extensive evaluation, it would lead to an inherent lengthy
convergence process compared to our stepwise profiling approach in which operators are heuris-
tically parallelized with insights obtained from the queuing model.

Elasticity in DSMSs has received increasing research attention as it enables cost-efficient han-
dling of workload variations. Some works explored dynamically scale out/in streaming applica-
tions through the adjustment of parallelism settings as well as tuning relevant parameters. DRS
is a resource scheduler that dynamically decides the parallelism hint for each operator based on
queueing theory, with the goal of minimizing the total sojourn time of an average input (Fu et al.
2015). However, it targets only computation-intensive applications. Lohrmann et al. (2015) contin-
uously rebalance the topology with new configurations according to a proposed latency model,
and they double the parallelism of any operator found to be a bottleneck. Nevertheless, the pro-
posed bottleneck resolving method is coarse-grained and may lead to resources wastage. Heinze
et al. compared three different scaling techniques in terms of the quality of the produced scaling
decisions, and the results demonstrated that reinforcement learning is more adaptive and robust

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:28 X. Liu et al.

than the threshold-based alternatives (Heinze et al. 2014b). Hidalgo et al. combined the threshold-
based method with the Markov chain model to dynamically change the operator parallelism, so
the short-term and mid-term workload variations can be handled with reactive and predictive
approaches, respectively (Hidalgo et al. 2017). Besides, realizing elasticity for stateful operators re-
quires non-trivial efforts to handle issues such as stream rerouting and state migration. While the
adopted pause-and-resume strategy is commonly seen in the literature (Castro Fernandez et al.
2013; Cardellini et al. 2016; Madsen et al. 2016), there are also advanced protocols for operator
movement and state management that allow for interruption-free elasticity (Wu and Tan 2015;
Matteis and Mencagli 2017; Ravindra et al. 2017). In future work, these techniques can be inte-
grated in our prototype to improve its responsiveness against workload burst. As for parameter
tuning, Das et al. (2014) proposed a control algorithm to automatically determine the most suit-
able batch for a given state, while online parameter optimization has been investigated by Heinze
et al. to deal with the situation where the application needs to be dynamically scaled as a reaction
to workload changes (Heinze et al. 2015). Our target is different to all those above as we try to
determine the configuration for any streaming application given the platform that maximizes the
throughput under latency constraint.

In contrast, the task allocation and scheduling problem has received much more attention from
the research community. Aniello et al. pioneered this area with two scheduling algorithms on
Apache Storm: the off-line version makes all the scheduling decisions through a static analysis
of the logic DAG, while the on-line version regularly collects runtime information to sort all the
communicating pairs of tasks, with an attempt to sequentially co-locate them in the same node to
reduce communication cost (Aniello et al. 2013). Inspired by this idea, many works extended the
on-line algorithm by adding some other aspects into consideration, such as scheduling overhead,
resource awareness, and energy efficiency. Chatzistergiou et al. proposed a linear time task allo-
cation algorithm to adaptively reconfigure task locations in the presence of environment changes,
resulting in a significant improvement from the existing quadratic time solutions (Chatzistergiou
and Viglas 2014). Fischer et al. presented an application agnostic algorithm that supports schedul-
ing of large-scale task graphs with regard to the communication pattern, the problem of minimiz-
ing inter-node messages is thus translated into a graph-partitioning problem, which can be solved
by the use of METIS algorithm (Fischer and Bernstein 2015).

On the other hand, there are also some articles that explored the area of resource aware sched-
uling and put an emphasis on worker node consolidation. The algorithm used in T-Storm (Xu
et al. 2014) tries to minimize both inter-node and inter-process traffic while avoiding overloading
the dwindled worker nodes. Similarly, Peng et al. (2015) considered the task scheduling as a varia-
tion of the Knapsack problem with several hard/soft resource constraints, so it can be solved by the
application of linear programming given that the user has provided the resource demand and avail-
ability information. Apart from the common target of reducing communication cost, Re-Stream,
an energy-efficient resource scheduling mechanism by Sun et al., proposed the minimization of
energy consumption as long as the response latency meets SLA requirements. This is achieved by
an analytic model that depicts the relationship among energy consumption, response time, and
the resource utilization (Sun et al. 2014, 2015). Our work can be used along with these methods
above as none of them address the issue of task parallelization.

Besides cluster and cloud environments that are the target of our approach, the problem of de-
ploying streaming application on multi-core systems and distributed networks has also been dis-
cussed by several works. Hormati et al. (2009) proposed a framework that dynamically adapts ap-
plications to the changing characteristics of the multi-core resources to maximize the throughput,
using a hybrid approach of static compilation and dynamic configurations adjustments. Similarly,
Suleman et al. (2010) introduced a framework to tune the parallelism for each stage in a processing

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:29

pipeline using a hill-climbing algorithm that can both save time and reduce the number of used
cores. As for network deployment, Cardellini et al. (2015) extended Apache Storm with a self-
adaptive distributed scheduling mechanism, which allows execution of streaming applications on
a geographically distributed environment with a certain level of QoS guarantee.

7.2 Application Profiling

Application profiling is a technique that actively extracts and evaluates the characteristics of appli-
cations, for example, the space or time complexity, to facilitate the use of computing resources. The
profiled data sets can be either low-level usage traces of CPU, memory, and network bandwidth, or
high level metrics that are part of application SLA, such as throughput, latency, and fault-tolerance
ability (Weingartner et al. 2015). To make sure that the application profile would accurately reflect
resource needs, the profiling process is normally conducted in a dedicated profiling environment
following the MAPE-K autonomic loop (Monitor, Analyze, Plan, Execute-Knowledge) (Kephart
and Chess 2003), which enables controllable organization of input data and eliminates variation
factors that would affect the result collection and analysis.

Most of the state-of-the-art programming IDEs, such as Microsoft Visual Studio and Eclipse,
provide tools to aid in determining bottlenecks in the code that affect the overall performance
of a program. However, the research community has gone way beyond code-level performance
profiling. Urgaonkar et al. (2002) investigated the overbooking problem by the use of application
profiling, which helps to deliver an accurate estimate of resource needs for application compo-
nents co-located on shared hosts. Do et al. (2011) achieved better virtual machine placement with
a performance prediction model derived from the application profile. To obtain higher profiling
accuracy, they identify background load, which is the interference of other applications into con-
sideration. Shen et al. (2015) used profiling to automate the detection of performance bottleneck
for web applications with a large set of input parameters. Similar to our work, the proposed pro-
filing method is able to heuristically search the best configuration that maximizes the objective
performance function. Qian et al. (2011) developed a tool that profiles the cross-layer interaction
within mobile applications, aiming to better reveal the performance and energy bottlenecks hidden
in the inefficient resource usages. Still, our work is different to them in that we adopt the profil-
ing method to guide the deployment process of streaming application, while the above-mentioned
models mostly target batch-oriented (MapReduce) or interactive-oriented (web and mobile) appli-
cations and thus cannot be directly applied in streaming applications.

It is also worth mentioning that we have carefully designed the stepwise profiler to avoid DSMS
lock-in. Besides Apache Storm, there are many operator-based DSMSs that support general pur-
pose stream processing, including Microsoft TimeStream (Qian et al. 2013), Apache Samza, Apache
Flink (Lohrmann et al. 2014), and Twitter Heron (Kulkarni et al. 2015). None of them has a built-in
feature to automatically decide the parallel configuration for a particular application, and thus all
of them can benefit from the proposed profiler.

7.3 Other Performance Optimization Techniques

It has been more than a decade since the first generation DSMSs, including Aurora (Abadi et al.
2003), Niagara (Chen et al. 2000), and Telegraph (Chandrasekaran et al. 2003), were introduced to
facilitate the development and deployment of streaming applications. Along with the increasing
adoption of DSMS, various optimization techniques have been developed to improve the perfor-
mance of applications without changing their topology or semantics.

Operator placement optimization, for example, is a process of assigning operators to specific
hosts and cores to reach a trade-off between communication cost and resource contention. Though
it is still a kind of adjustment in application layout rather than spreading and scheduling tasks (as

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:30 X. Liu et al.

discussed in Section 7.1), operator placement in previous generation DSMS regards each operator
as an indivisible entity that can only appear in one place at a time. In this context, Gordon et al.
designed a software-programmable substrate capable of generating custom communication code to
reduce message hops when placing operator on multi-core systems (Gordon et al. 2002). Auerbach
et al. proposed a placement mechanism to guarantee that operators compiled for an FPGA will
always be placed on hosts with FPGAs (Auerbach et al. 2010). In addition to resource matching,
Wolf et al. (2008) considered other constraints during the placement process, such as licensing and
security requirement.

Load balancing is another commonly used optimization technique to evenly distribute work-
load across available resources. This requires either a balanced operator placement plan or a
runtime mechanism to dynamically assign stream tuples to operators. As examples of these two
approaches, Xing et al. migrated conflicting operators that experience load spikes at the same
time to separate locations to avoid resource contention and thus improving load balance (Xing
et al. 2005), while Amini et al. (2006) discussed the use of back-pressure in System S to compensate
skews found in runtime.

However, these optimization techniques are no longer applicable to state-of-the-art streaming
applications built on top of operator-based DSMS, as the implementation of DSMS has greatly
evolved towards scalability and robustness, causing operator placement and load balancing to rely
heavily on the parallelization and scheduling of tasks that constitute the operator.

8 CONCLUSIONS AND FUTURE WORK

We proposed a streaming application profiler that consists of three steps, namely (i) application
feature profiling, which aims to identify the complexity and task load for each operator; (ii) plat-
form capability profiling, which endeavours to scale up the application with the knowledge learned
from the previous step; and (iii) operator capacity profiling, which makes necessary amendments
on fine-grained level to further improve performance of the application. Our profiler can be used
to scale up streaming application, build the relationship between the underlying resources and
the performance metrics, and further evaluate the choice of resource provision. An evaluation of
a profiler prototype applied to three real-world applications showed that our approach is able to
automatically improve the throughput up to 40.1% compared to Stela, a state-of-the-art alternative
scaling approach.

As for future work, we plan to devise auto-scaling policies on top of the profiling results, which
enables dynamic adjustment of provisioned resources according to real-time performance require-
ments of a variety of workloads. Since responsiveness is a critical criterion for realizing runtime-
adaptation, the envisioned auto-scaling policies should be built on top of interruption-free scaling
mechanisms such as dynamic stream rerouting and live state migration. Deploying the streaming
applications on the cloud and exploiting the use of VM with different configurations are also on our
future plan. A distinct advantage of using cloud resources is that it supports resource customiza-
tion. Therefore, there is a great potential in performance optimization to place different operators
on tailored cloud instances that fit their special needs, such as hosting computation-intensive op-
erators on fast CPU nodes and placing operators with intensive intercommunication in the same
virtual node to minimize communication overhead. We would also like to leverage different cloud
pricing models (On-Demand, Reserved, Spot) with the aim of minimizing the monetary cost of
stream processing, making cloud a preferable platform for deployment of streaming applications.

REFERENCES

Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker,

Nesime Tatbul, and Stan Zdonik. 2003. Aurora: A new model and architecture for data stream management. VLDB

J. 12, 2 (Aug. 2003), 120–139.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:31

Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Silber, and Olivier Verscheure. 2006. Adaptive control of extreme-scale

stream processing systems. In Proceedings of the 26th IEEE International Conference on Distributed Computing Systems

(ICDCS’06). IEEE Computer Society, 71–77.

Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive online scheduling in storm. In Proceedings of

the 7th ACM International Conference on Distributed Event-Based Systems (DEBS’13). ACM, 207–218.

Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. 2010. Lime: A java-compatible and synthesizable

language for heterogeneous architectures. In Proceedings of the ACM International Conference on Object-Oriented Pro-

gramming Systems Languages and Applications (OOPSLA’10). ACM, 89–108.

Paolo Bellavista, Antonio Corradi, Andrea Reale, and Nicola Ticca. 2014. Priority-based resource scheduling in distributed

stream processing systems for big data applications. In Proceedings of the 2014 IEEE/ACM 7th International Conference

on Utility and Cloud Computing (UCC’14). IEEE, 363–370.

Michael Cammert, Christoph Heinz, Jurgen Kramer, Bernhard Seeger, Sonny Vaupel, and Udo Wolske. 2007. Flexible multi-

threaded scheduling for continuous queries over data streams. In Proceedings of the 23rd IEEE International Conference

on Data Engineering Workshop (ICDE’07). IEEE, 624–633.

Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. 2015. Distributed QoS-aware scheduling

in storm. In Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems (DEBS’15). ACM,

344–347.

Valeria Cardellini, Matteo Nardelli, and Dario Luzi. 2016. Elastic stateful stream processing in storm. In Proceedings of the

2016 International Conference on High Performance Computing Simulation (HPCS’16). IEEE, 583–590.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch. 2013. Integrating scale out and fault

tolerance in stream processing using operator state management. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data (SIGMOD’13). ACM, 725–736.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh

Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous dataflow process-

ing. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03). ACM,

668–668.

Andreas Chatzistergiou and Stratis D. Viglas. 2014. Fast heuristics for near-optimal task allocation in data stream processing

over clusters. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge

Management (CIKM’14). ACM, 1579–1588.

Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ: A scalable continuous query system for inter-

net databases. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD’00).

ACM, 379–390.

Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive stream processing using dynamic batch sizing.

In Proceedings of the ACM Symposium on Cloud Computing (SOCC’14). ACM, 1–13.

Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, A. Y. Zomaya, and Bing Bing Zhou. 2011. Profiling applica-

tions for virtual machine placement in clouds. In Proceedings of the IEEE International Conference on Cloud Computing

(CLOUD’11). IEEE, 660–667.

Lorenz Fischer and Abraham Bernstein. 2015. Workload scheduling in distributed stream processors using graph partition-

ing. In Proceedings of the 2015 IEEE International Conference on Big Data (BigData’15). IEEE Computer Society, 124–133.

Lorenz Fischer, Shen Gao, and Abraham Bernstein. 2015. Machines tuning machines: Configuring distributed stream pro-

cessors with Bayesian Optimization. In Proceedings of the 2015 IEEE International Conference on Cluster Computing

(CLUSTER’15). IEEE, 22–31.

Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett, Yin Yang, and Zhenjie Zhang. 2015. DRS: Dynamic

resource scheduling for real-time analytics over fast streams. In Proceedings of the IEEE 35th International Conference on

Distributed Computing Systems (ICDCS’15). IEEE, 411–420.

Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014. Elastic scaling for data stream processing. IEEE

Trans. Parallel Distrib. Syst. 25, 6 (June 2014), 1447–1463.

Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong,

Henry Hoffmann, David Maze, and Saman Amarasinghe. 2002. A stream compiler for communication-exposed archi-

tectures. In Proceedings of the 10th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’02). ACM, 291–303.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, and Patrick Valduriez. 2012. Stream-

Cloud: An elastic and scalable data streaming system. IEEE Transactions on Parallel and Distributed Systems 23, 12 (Dec.

2012), 2351–2365.

Thomas Heinze, Leonardo Aniello, Leonardo Querzoni, and Zbigniew Jerzak. 2014a. Cloud-based data stream process-

ing. In Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems (DEBS’14). ACM, 238–

245.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

24:32 X. Liu et al.

Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. 2014b. Auto-scaling techniques for elastic data

stream processing. In Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems (DEBS’14).

ACM, 318–321.

Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji, Zbigniew Jerzak, and Christof Fetzer. 2015. Online parameter

optimization for elastic data stream processing. In Proceedings of the 6th ACM Symposium on Cloud Computing (SoCC’15).

ACM, 276–287.

Nicolas Hidalgo, Daniel Wladdimiro, and Erika Rosas. 2017. Self-adaptive processing graph with operator fission for elastic

stream processing. Journal of Systems and Software 127 (2017), 205–216.

Amir H. Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric Rabbah, Trevor Mudge, and Scott Mahlke. 2009. Flextream:

Adaptive compilation of streaming applications for heterogeneous architectures. In Proceedings of the 18th International

Conference on Parallel Architectures and Compilation Techniques (PACT’09). ACM, 214–223.

Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. 2013. Elastic stream processing in the cloud. Wiley Interdisc.

Rev.: Data Min. Knowl. Discov. 3, 5 (Sept. 2013), 333–345.

Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philippe Selo, and Chitra Venkatramani. 2006.

Design, implementation, and evaluation of the linear road benchmark on the stream processing core. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIGMOD’06). ACM, 431–442.

Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (Jan. 2003), 41–50.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel,

Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter heron: Stream processing at scale. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD’15). ACM, 239–250.

Teng Li, Jian Tang, and Jielong Xu. 2015. A predictive scheduling framework for fast and distributed stream data processing.

In Proceedings of the 2015 IEEE International Conference on Big Data (BigData’15). IEEE Computer Society, 333–338.

Bjn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic stream processing with latency guarantees. In Proceedings of the

2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS’15). IEEE, 399–410.

Bjrn Lohrmann, Daniel Warneke, and Odej Kao. 2014. Nephele streaming: Stream processing under QoS constraints at

scale. Cluster Comput. 17, 1 (2014), 61–78.

Kasper Grud Skat Madsen, Yongluan Zhou, and Li Su. 2016. Enorm: Efficient window-based computation in large-scale

distributed stream processing systems. In Proceedings of the 10th ACM International Conference on Distributed and Event-

based Systems (DEBS’16). ACM, 37–48.

Tiziano De Matteis and Gabriele Mencagli. 2017. Proactive elasticity and energy awareness in data stream processing.

Journal of Systems and Software 127 (2017), 302–319.

Lory Al Moakar, Alexandros Labrinidis, and Panos K. Chrysanthis. 2012. Adaptive class-based scheduling of continuous

queries. In Proceeding of the 28th IEEE International Conference on Data Engineering Workshop (ICDE’12). IEEE, 289–294.

Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell. 2015. R-Storm: Resource-aware sched-

uling in Storm. In Proceedings of the 16th Annual Middleware Conference (Middleware’15). ACM, 149–161.

Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. 2011. Profiling

resource usage for mobile applications: A cross-layer approach. In Proceedings of the 9th International Conference on

Mobile Systems, Applications, and Services (MobiSys’11). ACM, 321–334.

Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang.

2013. TimeStream: Reliable stream computation in the cloud. In Proceedings of the European Conference on Computer

Systems (EuroSys’13). ACM, 1–14.

Sajith Ravindra, Miyuru Dayarathna, and Sanath Jayasena. 2017. Latency aware elastic switching-based stream processing

over compressed data streams. In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engi-

neering (ICPE’17). ACM, 91–102.

Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-Lung Wu. 2009. Elastic scaling of data parallel

operators in stream processing. In Proceedings of the IEEE International Symposium on Parallel Distributed Processing

(IPDPS’09). IEEE, 1–12.

Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu. 2012. Auto-parallelizing stateful distributed streaming

applications. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques

(PACT’12). ACM, 53–64.

Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. 2015. Automating performance bottleneck detection using

search-based application profiling. In Proceedings of the 2015 International Symposium on Software Testing and Analysis

(ISSTA’15). ACM, 270–281.

Muhammad Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. 2010. Feedback-directed pipeline parallelism.

In Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques (PACT’10). ACM,

147–156.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

A Stepwise Auto-Profiling Method for Performance Optimization 24:33

Dawei Sun, Ge Fu, Xinran Liu, and Hong Zhang. 2014. Optimizing data stream graph for big data stream computing in

cloud datacenter environments. Int. J. Adv. Comput. Technol. 6, 5 (2014), 53–65.

Dawei Sun, Guangyan Zhang, Songlin Yang, Weimin Zheng, Samee U. Khan, and Keqin Li. 2015. Re-Stream: Real-time and

energy-efficient resource scheduling in big data stream computing environments. Info. Sci. 319 (Oct. 2015), 92–112.

Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. 2002. Resource overbooking and application profiling in shared

hosting platforms. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 239–254.

Rafael Weingartner, Gabriel Beims Brascher, and Carlos Becker Westphall. 2015. Cloud resource management: A survey

on forecasting and profiling models. J. Netw. Comput. Appl. 47 (2015), 99–106.

Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit Wagle, Kun-Lung Wu, and Lisa Fleischer.

2008. SODA: An optimizing scheduler for large-scale stream-based distributed computer systems. In Proceedings of the

9th ACM/IFIP/USENIX International Conference on Middleware (Middleware’08). Springer-Verlag, 306–325.

Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream computation in the cloud. In Proceedings of the

2015 IEEE 31st International Conference on Data Engineering. IEEE, 723–734.

Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. 2005. Dynamic load distribution in the borealis stream processor. In

Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE Computer Society, 791–802.

Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. 2014. T-Storm: Traffic-aware online scheduling in storm. In Proceedings

of the 2014 IEEE 34th International Conference on Distributed Computing Systems (ICDCS’14). IEEE Computer Society,

535–544.

Le Xu, Boyang Peng, and Indranil Gupta. 2016. Stela: Enabling stream processing systems to scale-in and scale-out on-

demand. In Proceedings of the 2016 IEEE International Conference on Cloud Engineering (IC2E’16). IEEE, 22–31.

Received November 2016; revised May 2017; accepted July 2017

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 24. Publication date: November 2017.

