

 1

Abstract

A key issue in utility computing environments, such as

utility Grids, is the provisioning, orchestration and

allocation of resources to services. In these

environments, providers need to decide how resources

are allocated to service applications according to their

workloads, guaranteeing the Quality of Service (QoS)

required by customers. Autonomic computing inspired

mechanisms are appealing to enable self-organising

resource allocation and provisioning. However, these

mechanisms are difficult to evaluate in practice either

because of the lack of a real test bed or the difficulty in

replicating experimental results. This work describes a

service framework for a Grid simulator, which enables

the modelling and simulation of service-oriented

applications. This framework allows the modelling and

evaluation of provisioning and negotiation of services

and resources. We discuss experimental results that

demonstrate the usefulness of the framework for the

simulation of a decentralised, self-organising economic

model for service and resource negotiation termed

Catallaxy.

1. Introduction

Grid computing allows the secure and coordinated

sharing of globally distributed resources spanning

multiple physical organisations [1]. Service-Oriented

Architectures (SOAs) underlie several of the current

Grid initiatives and reflect the current Grid computing

infrastructures, where participants offer and request

application services. A SOA defines standard interfaces

and protocols that enable developers to encapsulate

resources of different complexity and value as services

that clients access without knowledge of their internal

workings [2, 3].

Grid systems have therefore increasingly been

structured as networks of interoperating services that

communicate with one another via standard interfaces.

Scientists can provide data, algorithms and applications

as services to other members of the scientific

community. In addition, with the advent of utility

computing environments, several resource providers

host services and provide the tools needed by scientists

and companies to expose the core functionalities of their

research or business as services that are subsequently

used by clients or collaborators.

In utility computing environments resource providers

offer resources to host services in a pay as you go

fashion. There is a clear separation of providers and

consumers in such environments. Virtualisation

technology offers powerful resource management

mechanisms for utility computing by enabling

performance isolation, migration, suspension and

resumption of virtual machines. One key issue, however,

is the provisioning, orchestration and allocation of

resources to services. Utility computing providers need

to decide how resources are allocated to service

applications according to their workloads, guaranteeing

the QoS expected by their customers. Autonomic

computing [4] inspired mechanisms and policies are

appealing to enable self-organising allocation of

resources to services in these environments, as well as

for service provisioning and negotiation [5-8].

However, it is challenging to design and evaluate

practical allocation policies that permit utility computing

environments to self-manage and adjust resource

Enabling the Simulation of Service-Oriented Computing

and Provisioning Policies for Autonomic Utility Grids

Marcos Dias de Assunção1, Werner Streitberger2, Torsten Eymann2 and Rajkumar Buyya1

1
Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

{marcosd, raj}@csse.unimelb.edu.au

2
Chair for Information Systems Management

University of Bayreuth, Germany

{streitberger, eymann}@uni-bayreuth.de

 2

allocations according to the provisioning decisions of

the offered services. Moreover, it is also a challenge to

evaluate these policies and negotiation strategies either

due to the difficulty of replicating experiments or a lack

of a real test bed. The modelling and evaluation of these

mechanisms and related policies can be augmented by

the use of simulators.

Even though Grids and data centres are moving

towards such a utility and autonomic computing

scenario, simulation tools do not keep up and still focus

on issues related to resource modelling and allocation

assuming in general a job abstraction. The existing Grid

simulation toolkits do not provide the features needed to

model and simulate services, their placement on

resources, their workloads and provisioning policies let

aside the abstraction of containers or virtual machines.

In this work, we present a framework that allows the

modelling, simulation and evaluation of mechanisms and

policies for service provisioning, negotiation and

resource management. The framework supports the

simulation of service-oriented applications, and

considers service dependencies, for different domains

including high-performance, on-demand and utility

computing. We demonstrate the usefulness of our

framework by modelling and simulating an Application

Layer Network (ALN) and an economic model for

service and resource negotiation termed Catallaxy.

Therefore, the main contributions of this work are to:

• Provide a framework for modelling and

simulation of service-oriented applications and

autonomic policies for service provisioning and

resource orchestration in utility computing

environments.

• Demonstrate the usefulness of the service

framework by modelling and evaluating an

economic model for service provisioning and

resource allocation for ALNs.

• Present empirical results that show the usefulness

of the Catallaxy economic model for resource

allocation and service negotiation.

The remaining part of this paper is organised as

follows. Section 2 presents background and related

work. Section 3 describes the service framework. In

Section 4, we present the design of a decentralised

economic bargaining model for ALNs (i.e. the

Catallaxy). Section 5 presents the performance

evaluation results and finally, Section 6 concludes the

paper.

2. Background and Related Work

In this section, we present an illustrative scenario to

evidence the mechanisms and policies that we would

like to model and simulate. We consider a utility data

centre that hosts service applications and also provides

resources on demand to its customers' business

applications. A simplified model of the utility data

centre is presented in Fig. 1 [9]. From right to left, the

centre is composed of a pool of physical resources that

are managed by server virtualisation technology [10,

11]. The services offered to customers run on

Application Environments (AEs) within the resource

pool, which are isolated from one another. An AE is a

set of virtual resources, that is, containers or Virtual

Machines (VMs). The resource arbitrator allocates

resources to each AE according to the resource

allocation policies in order to meet the required

performance and service levels.

Clients
Requests

Physical
Resource

Strategies for Allocation
of Resources to Services

Strategies for
Service Provisioning

Resource
Arbitrator

Service
Provisioning

Virtual
Resource

Application
Environment
for Service 1

Application
Environment
for Service 2

Service 1

Service 2

Fig. 1 – Abstract view of a utility data centre.

 3

In this scenario, customers can utilise services without

the knowledge of the internal infrastructure of the

resource layer and the resource allocation policies.

However, customers and providers negotiate the Quality

of Service (QoS) required, and customers want to have

guarantees about the service delivery. These guarantees

are negotiated and established through Service Level

Agreements (SLAs). Service provisioning policies

define how the service is provided in order to achieve

the service levels stated in the SLA. In this case, the

provider has to decide on how the service is

provisioned.

The services have a workload that can vary. The

number of requests to the hosted services and the

expected QoS levels will guide the arbitrator on the

resource allocation decisions. The arbitrator has to

decide the resources required by each service and

whether new resources have to be allocated to meet

demand peaks or not. A decoupling of service and

resource layers allows one to model strategies for the

placement of services on resources and resource

orchestration. One can also evaluate distinct markets or

mechanisms for service negotiation and resource

allocation. Therefore, a provider in this scenario has two

policies: one that defines how a service is provisioned

and one that defines how resources are allocated.

This is naturally an example; however, a simulation

framework should be flexible enough to enable the

modelling and simulation of varying scenarios. For

instance, the ALN presented in this work follows a two

layer market model. In one layer, resource providers

provide processing and storage resources. Service

providers negotiate with resource providers to acquire

capacity to host services. The second layer corresponds

to the negotiation between service providers for the

delivery of composite services. For example, a service

provider can negotiate the access to several atomic

services in the service market to deliver it as a bundle,

or composite service, to its customers. Similar scenarios

are considered in other utility computing strategies [12].

2.1 Related Work

Several Grid simulators allow the modelling and

simulation of Grid resources and allocation policies;

examples include OptorSim [13], SimGrid [14] and

MicroGrid [15]. OptorSim provides the features needed

to model and evaluate the data transfer and replication

strategies in data Grids. It is a discrete event simulator

implemented in Java and follows the abstraction of data

resources. The main goal of this simulator is to provide

a means for evaluation of data transfer strategies in a

data Grid, and so it does not provide a service-oriented

application model.

MicroGrid enables the emulation of a Grid

environment. A user can run her Grid application on this

emulated environment, while the simulator intercepts the

exchanged messages. Although it is possible to simulate

service-oriented applications, MicroGrid does not

provide a decoupling of the service and resource layers

that would allow the design and evaluation of different

strategies or economic mechanisms for each layer.

SimGrid provides a set of abstractions and

functionalities that can be used to build simulators for

several application domains. The core functionalities

can be used to model and evaluate parallel application

scheduling on distributed computing platforms. SimGrid

also provides emulation facilities for running distributed

and parallel applications in an emulated Grid

environment. SimGrid is a trace based event simulator

and, like the simulators previously described, uses the

abstraction of ‘resources’.

GridSim [16] is a Java-based Grid simulation toolkit

that provides features for application composition,

information services, and the ability to model

heterogeneous computational resources of variable

performance. In addition, GridSim provides an auction

framework that allows the design and evaluation of

auction protocols for Grid systems. By using these

features, it is possible to model and evaluate the

scheduling of jobs on Grid resources and evaluate the

impact of the allocation policies. GridSim has the

features necessary to design and model the resource

layer.

The features provided by GridSim enable the

modelling and simulation of intricate Grid

environments. However, it does not provide a service

framework for simulating service-oriented Grid

applications. In this work we opted to leverage the

existing features of GridSim and provide a service

framework that enables the modelling and evaluation of

service provisioning policies, resource allocation

policies and multiple economic mechanisms for service

negotiation and resource management. GridSim, along

with the extensions described here, provides means for

evaluating autonomic computing systems, utility

computing environments and utility Grids.

3. A Service Framework for GridSim

This section discusses the service framework for

simulating service-oriented Grid applications in

 4

GridSim. First, we describe the requirements for

simulating service applications. Next, we present how

the architecture and the framework fulfil these

requirements. Finally, we present an example of the

usage of the service framework.

3.1 Requirements for the Service Framework

A framework for simulation of service-oriented Grid

applications needs to satisfy the following requirements:

Clear decoupling of resources and services:

Services require resources to serve clients’ requests.

However, there should be a separation between the

service and the resource layers. This allows one to

model and evaluate different strategies for each of the

layers. For example, a decentralised bargaining

economic model can be used to allocate resources.

However, once the resources are obtained by a service

provider to host the services, the provider can engage in

a centralised market, in which providers and clients

place offers and bids for service usage.

Separation of service provisioning from resource

acquisition policies: In addition to the distinction

between service and resource layers, a provider’s

policies also have to be split into two groups, namely

provisioning and acquisition policies. Provisioning

policies define how the provider decides and negotiates

on the allocation of services to clients, while the

acquisition policies define the provider’s behaviour

when negotiating and obtaining resources or atomic

services required to deliver a composite service.

Service information repositories for resource and

service discovery: Clients or providers can query

repositories or Peer-2-Peer (P2P) networks for

discovering services. When querying, clients and

providers can specify the characteristics as well as the

cost of the services they need.

Negotiation and bargaining for the provision of

services and resources: The framework has to support

means for one to model and evaluate negotiation and

bargaining models for services and resources. The

negotiation model has to be generic enough so that a

negotiation can take place between a client and a

provider or between two providers. Several negotiation

models can be modelled and evaluated.

3.2 Realisation of a Service Framework for GridSim

In this section, we firstly describe GridSim and then

present the service-framework justifying some design

decisions. We present a high-level description of key

concepts regarding the model and main components of

GridSim. For a thorough explanation, we refer to

previous work [16, 17].

GridSim is a discrete event simulator built on top of

SimJava2 simulation package. A simulation in GridSim

comprises of GridSim entities that communicate with

one another by passing and scheduling simulation

events. GridSim adopts a job model, that is, applications

are modelled as jobs or tasks that are executed on Grid

resources. A Gridlet corresponds to a job, which has

parameters like the job length expressed in Millions of

Instructions (MIs), the amount of CPUs required, among

others. It is possible to model Grid resources of varying

configurations such as supercomputers, commodity

clusters and personal computers. The processing

capacity of a resource’s CPUs is expressed in Millions

of Instructions Per Second (MIPS). GridSim provides

resource allocation policies such as space-shared, time-

shared and space-shared supporting advance

reservations. However, the user may implement her own

resource allocation policy by extending the abstract

class AllocPolicy, defining how a resource’s CPUs are

allocated.

GridSim provides a hierarchical Grid Information

Service (GIS) that can be comprised of multiple regional

GISs. At the start of the simulation, a Grid resource

registers itself with a regional GIS. A user can define

what information a Grid resource should provide to the

GIS; however, by default the Grid resource registers

only its ID and whether it supports advance reservation

or not. In addition, GridSim allows the modelling and

simulation of data resources and catalogues for data

Grids, and network topologies. The features listed above

allow a user to model resource brokers and varying

scheduling strategies for Grid computing.

In a utility computing environment resource providers

have resource pools and provision these resources to

service providers or consumers to host service

applications. The service providers need to acquire

resources to host the service applications to be able to

serve customers’ requests. Service providers provision

their services to customers and are willing to provide a

given QoS under a given number of requests. The

service requests will impose a workload on the resources

allocated. The provision of a composite service may

require the use of other atomic services.

Thus, the proposed framework considers two distinct

stages: (i) the negotiation for and allocation of the

resources to host services, and the negotiation for

services and the required QoS; and (ii) the actual

utilisation of the services and resources. The framework

provides means for modelling service registries and

discovery, service and resource negotiation as well as

 5

means for measuring the resource utilisation imposed by

the services’ workloads.

A provider in this scenario has two policies: one that

defines how a service is provisioned and one that

defines how resources are allocated to a service. With

the advent of server virtualisation, the allocations may

change according to the service workloads.

�������

������������	
���

�������

���������	
�����������������������
�����������	
�������������������
�����������	
������������������

����������� ����������������������

������������������

�������������

�����������

Fig. 2 - Relationship between Provider, Service and RegionalGSR.

We term the policy that defines how a service is

provisioned Provisioning Policy while the allocation

policy is termed Acquisition Policy. The class Provider

is a GridSim entity that implements the basic behaviour

for a provider. A provider has characteristics

represented by ProviderCharacteristics. The class

ProviderCharacteristics contains a list of Services

offered by the provider and other attributes like time

zone, and the provisioning and acquisition policies

utilised. A Service corresponds to a service offered by

the provider and has ServiceAttributes and

ServiceRequirements. At the start of the simulation, the

provider registers itself and the attributes of her services

with a regional Grid Service Registry (GSR).

ServiceAttributes include information like service cost,

name and type. We opted for implementing service

attributes as a distinct class for the sake of performance

and minimisation of simulation events. The

ServiceRequirements correspond to atomic services or

specific resources required to deliver the service to

clients. For example, a provider may offer a service, but

does not allocate resources to it until the service is

required. Fig. 2 demonstrates the relationship between

services, providers and GSRs.

The Provider can engage in a market with clients for

negotiating its resources. It can also participate in

different markets with different mechanisms for

negotiating and providing the resources necessary to

host the services and satisfy the requests for a service.

���
�����������

���������	
�����������������������
������������	
����������������
���������	
�������

����������������������������� !!!"

�������

���������	
�����������������������
�����������	
�������������������
�����������	
������������������

���������������

���������	
�����������������������
������������	
����������������
���������	
�������

��������������� !!!"
������#������������ !!!"
�������#������ !!!"
���������������������������� !!!"

���������
�����������
���������������������

��������������

����������
���

����������
�����

�����

�����������

Fig. 3 - Class diagram for the provider and the policies.

Fig. 3 shows a diagram describing providers and the

basic provisioning policies implemented. Both

ProvisioningPolicy and AcquisitionPolicy implement

the NegotiationPolicy interface. A NegotiationPolicy

defines the methods necessary to handle negotiations for

service provisioning or resource allocation based on

WS-Agreement. The provisioning policy defines how

the provider manages the negotiation with clients for

service provisioning and how it handles the resource

requests. The acquisition policy specifies the provider’s

behaviour in negotiating with other providers for

accessing the required services or resources. These

services can be needed for composite services and the

resources are required to host service applications. In

many instances, provisioning and acquisition policies

have to be synchronised or informed about one another

decisions, as demonstrated by Grit et al. [18]. We

provide methods that allow the policies to be

synchronised.

Two examples of provisioning and acquisition

policies are provided. In the provided implementation of

a provisioning policy, SimpleProvisioningPolicy, the

provider accepts requests while the maximum number of

instances for the service is not achieved. The acquisition

policy, SimpleAcquisitionPolicy, selects the first

resource from the provider’s resource pool to deal with

the workload generated by the service requests.

Although the Provider class can be extended, it is not

necessary since it is possible to define different

behaviours for a provider by extending the

ProvisioningPolicy and AcquisitionPolicy classes to

provide the strategies required.

 6

������������������$�����

���������%��������

��������������
����� �������������� ����������� ������������������������� ����������� �������������
����������� �����������
���

��������������� "

������������$���� "�����������

�����$����
���������������

�������������� "

����������������

%����������

��$���

�������

&��'������(������

����������������

Fig. 4 - An illustrative interaction of a service invocation.

The ServiceRequester class is a GridSim entity that

can query services at a GSR and make requests to

providers. These queries can be performed by passing a

filter to the GSR, which corresponds to specifying the

parameters for a query. For example, the service

requester can pass an object whose class extends

ServiceFilter to select all the ServiceAttributes with a

given service type and name. The GSR uses the filter to

select and return a list of ServiceAttributes that match

the given criteria.

A request for a service accepted by a provider

generates a workload. The workload is composed of

items that can be either requests for atomic services or

ServiceGridlets that are sent to the resources allocated to

the service. The ServiceGridlet class extends Gridlet by

specifying additional parameters such as memory and

storage required to fulfil the request. The values of these

parameters for a service request can be estimated

through profiling techniques, such as those described by

Urgaonkar et al. [19], where a service application is

examined in isolation and its workload is obtained by

analysing the use of resources such as memory, CPU

and disk. By following this model it is possible to

analyse the impact of different provisioning and

acquisition decisions on resource utilisation.

3.3 Modelling a Service-Oriented Grid Application

Fig. 4 presents an interaction diagram that illustrates a

simple example of the use of the service framework. We

consider that providers are assigned a number of

services and have already registered the service

attributes with a regional GSR. A service requestor then

starts by creating a filter and asking the regional GSR to

send a list of service attributes that match the given

criteria. When the list is returned by the GSR, the

service requester selects a provider and requests the

service. For the sake of simplicity, we do not consider

negotiations for service usage in this example. Once the

provider receives the service request, it decides whether

to accept the request or not based on its provisioning

policy. If the number of instances for that service has not

reached the maximum number of instances, the provider

accepts the request. When the provider accepts the

request, the acquisition policy is notified, so that it can

allocate the resources needed to host the service and

execute its workload. The service workload is obtained

in this case by passing the ServiceRequest to the service.

As demonstrated in more detail in Section 7, the

implementation of the service returns the workload by

considering several parameters of the request, such as

input file size and expected use time for the service. The

service workload is a list of WorkloadItems, in this case

ServiceGridlets that need to be executed on Grid

 7

resources. The SimpleAcquisitionPolicy allocates the

resources needed to execute the ServiceGridlets from

the provider’s resource pool. Once the resources have

been allocated, SimpleAcquisitionPolicy sends the

ServiceGridlets to them and monitors their execution.

Once all ServiceGridlets complete execution, the

acquisition policy will notify SimpleProvisioningPolicy,

which will in turn inform ServiceRequester that the

execution of the service request has been finished.

Although the acquisition and allocation of resources

in this illustrative scenario is made after a request is

accepted, this is generally not the case. A different

implementation of the AcquisitionPolicy can define that

service provider should reserve a set of resources in

advance, place the service applications on them, and

based on the resources available, take the decisions

regarding the provisioning of services.

4. The Catallaxy Scenario

The CATNETS project, funded by the European

Union, investigates the use of an economic model,

termed Catallaxy, for service negotiation and resource

allocation in ALNs, such as Grids and P2P networks.

This section describes the conceptual applicability of the

GridSim service framework to the catallactic economic

model utilised in CATNETS.

Resource
Provider

Resource
Provider

Service
Market

Resource
Market

Grid Service
Registry

Grid Service
Registry

Complex
Service

query

query

query

negotiate negotiate

register
register

Basic
Service

Basic
ServiceApplication

Fig. 5 - Catallaxy market model.

Catallaxy is a decentralised self-organising economic

model derived from Hayek’s concept of spontaneous

order [20]. The Catallaxy concept is based on the

explicit assumption of self-interested actions of the

participants, who try to maximise their own utility and

choose their actions under incomplete information and

bounded rationality [21]. The goal of Catallaxy is to

achieve a state of coordinated actions, through the

bartering and communication of members, to achieve a

common goal that no single user has planned. Hayek’s

Catallaxy concept is the result of descriptive, qualitative

research about economic decision-making of human

participants. Its results are taken literally to construct

ALN markets with software participants, who reason

about economic decisions using artificial intelligence.

Algorithm 1 AcquisitionPolicy

1: repeat forever

2: event � wait for an event

3: if event = message from provisioning policy then

4: proposals � Ø

5: request_accepted � the request ∈event

6: cfp � create cfp for request_accepted

7: send cfp

8: proposals � collect the proposals

9: best � select best proposal ∈ proposals

10: start bargaining process

11: outcome � result of the bargaining process

12: if outcome = success then

13: inform other participants about the success

14: end if

15: apply learning algorithm

16: notify provisioning policy about outcome

17: end if

18: if event = learning message then

19: treat message received

20: apply learning algorithm

21: end if
Fig. 6 – Pseudo-algorithm of the execution of an acquisition policy.

In ALNs, the participants offer and request services

and compute resources of different complexity and cost.

The interdependencies between services and resources

are split by creating two interrelated markets: a resource

market for trading of computational and data resources;

and a service market in which the trading of services

takes place. This separation allows instances of a service

to be hosted on different resources [22]. Fig. 5 shows

the abstract model adopted by CATNETS. A Complex

Service (CS) is a composite service, like a workflow,

that requires the execution of other interdependent

services, termed Basic Services (BSs). A CS is the entry

point for the application layer network. The traded

products on the service market, the BSs, are completely

standardised and have a single attribute name. The name

is a unique identifier whose intended semantics is shared

among all complex service providers. Multiple instances

of the same BS can co-exist in the ALN. For example,

two or more basic service providers are allowed to

provide a specific BS.

The service market is used by Complex Service

Providers (CSPs) to allocate BSs from Basic Service

Providers (BSPs). BSPs are registered in a GSR. A CSP

queries a GSR to receive a list of required trading

partners (BSPs) able to provide the BS required. This

list is ranked according to the BS offered price. The best

 8

BS offer is selected for the succeeding bargaining

process. This discovery process is modelled using GSRs

and discovery process offered by the simulation

framework.

Algorithm 2 ProvisioningPolicy

1: repeat forever

2: event � wait for an event

3: if event = call for proposals then

4: cpf � get the call for proposal ∈event

5: proposal � formulate proposal for cfp

6: reserve the resources

7: send proposal

8: end if

9: if event = bargaining then

10: start bargaining process

11: outcome � result of bargaining process

12: if outcome = success then

13: notify acquisition policy

14: inform other participants about the success

15: else

16: release resources

17: end if

18: apply learning algorithm

19: end if

20: if event = reject proposal then

21: release the resources

22: end if

23: if event = learning message then

24: treat message received

25: apply learning algorithm

26: end if
Fig. 7 – Pseudo-algorithm of a provision policy.

After a successful negotiation in the service market,

BSPs negotiate with Resource Providers (RPs) for the

resources necessary to host services and serve the

service requests. RPs utilise the existing resource

management systems to allocate the necessary resources.

RP offer resources in resource bundles. A resource

bundle is described by a set of pairs of resource type and

quantity. Every BS has an associated resource bundle.

The bundle defines the type and quantity of resources

needed for provisioning that service. In the CATNETS

scenario, the resource bundle required for a BS is

predefined for the sake of simplicity. In general, the

model allows the use of any BS to resource bundle

mapping function. In the resource market, the allocation

process follows the service market. First, a BSP queries

for RPs which are able to provide the specified resource

bundle and ranks the received list of RPs according to

the offered price. Second, the bargaining for the

resource bundle is carried out. If the resource

negotiation ends successfully, the BS is executed on the

contracted resources from a RP.

To realise these two markets in GridSim, we have

implemented provisioning and acquisition policies for

the three kinds of providers, namely CSPs, BSPs and

RPs. The providers differ in terms of the policies used

for service and resource provisioning and acquisition.

The execution of the market participant’s policy for

acquiring services or resources (i.e. AcquisitionPolicy)

is shown in the pseudo-algorithm in Fig. 6 and those of a

market participant’s policy for service provisioning (i.e.

ProvisioningPolicy) is depicted in Fig. 7.

The most important part of the implemented policies

is the utilised bidding strategy. This includes what a

provider bids. The bid denotes the provider’s valuation

and reservation prices, i.e. the maximum price which an

agent is willing to pay for the service and the minimum

price an agent has for selling a BS or a resource bundle

respectively. The generation of the valuation is

influenced by external factors such as the market price

and the learning algorithm. For the formal model of the

implemented strategy we refer to the work by Reinicke

et al. [23].

Closure zone

Start price

Start price

Price of
Purchase

price

SellerBuyer

Reservation price
(limit price)

Reservation price
(limit price)

10 20 30 40 50 60

Fig. 8 - Bilateral negotiation process.

The proposed realisation for the CATNETS markets

is the usage of a bilateral negotiation protocol for

exchanging bids in a point-to-point communication. The

initial situation is depicted in Fig. 8. Both trading

partners define a reservation price that reflects their

estimation of the value of the good. For a buyer, this is

the maximum price; for a seller it is a minimum price.

The start price represents the negotiation starting point.

By subsequent concessions, the opponents move closer

to a compromise and a possible contract. Each opponent

tries to maximise its own utility, which is the difference

between the price of purchase and the reservation price.

Thus, buyer and seller policy converge to a trade-off

point in an iterative way using the exchange of offers

 9

and counter-offers and successive concessions.

Rosenschein and Zlotkin [24] call this a monotonic

concession protocol. For each iteration, the policy

implementation chooses the best of three possible

actions for the next communicative act to be made:

accept offer, propose counter-offer (with concession or

otherwise), or reject offer.

In the implementation of the CATNETS scenario

using GridSim, CSs and BSs are modelled as Services.

The service requirements of a CS define the BSs needed

to deliver the CS. The service requirements of a BS

define a minimum resource bundle required to host the

BS. The requirements of a BS j are represented by BSRj

= (uj, pj, yj, mj, sj), where uj is the number of resources

required; pj represents the number of CPUs in each

resource; yj is the speed of the processors in MIPS; mj is

the amount of memory per resource; and sj represents the

storage capacity required.

Algorithm 3 receiveCFP(cpfj)

1: BSRj � obtain required resource bundle from cfp

2: RBi � the resource bundle advertised

3: selected_resources � Ø

4: booking_id � 0

5: for each resource Ri ∈RBi do

6: if Ri is not allocated then

7: if pj � pi and yj � yi and mj � mi and sj � si then

8: selected_resources � selected_resources � Ri

9: end if

10: end if

11: if selected_resources = uj then

12: booking_id � book(selected_resources)

13: break for

14: end if

15: end for

16: if booking_id � 0 then

17: proposal � create_proposal(selected_resources)

18: send(proposal)

19: else

20 reject(cpfj)

21: end if
Fig. 9 – RP’s strategy upon the arrival of a CFP.

A RP has a resource pool within which it creates

Application Environments (AEs) with the resource

configuration required by a BS. A resource bundle

corresponds to the resources offered by the RP. A

resource bundle i is represented by RBi = (ui, pi, yi, mi,
si), where ui is the number of resources in the bundle; pi

represents the number of CPUs in each resource; yi

represents the speed of the processors in MIPS; mi is the

amount of memory per resource; and si represents the

storage capacity per resource. A RP registers the bundle

with the GSR, which is viewed as a service by the BSP.

That is, RP provides a service that consists in allowing

the BSP to acquire resources.

As described beforehand, once a negotiation for a BS

finishes in the service market, a negotiation for the

resources needed for the BS starts at the resource

market. The BSP will search for RPs that can provide a

resource bundle that has the minimum amount of

resources required. The BSP will then start the

negotiation by sending a Call For Proposals (CFP) to the

selected RPs. The RPs whose resources have not been

allocated, will formulate a proposal. Once the

bargaining process is finished, the RP will allocate its

resources to host the BS. Although a RP can divide its

resource pool in various ways and change the allocations

of AEs over time, in the CATNETS implementation we

consider that they are pre-determined and do not change.

We also consider that a RP can allocate only part of its

bundle to an AE to host a BS when the BS does not

require the whole bundle. The strategy followed by a RP

when it receives a CFP from a BSP for the negotiation

of resources for a BS is summarised in the algorithm

presented in Fig. 9.

The RP examines its resource bundle to check

whether there are resources available to host the BS. If

the resources are available, RP will lock the resources

and will send a proposal. Although not included in this

algorithm, if RP receives a reject proposal message, the

resources will be released. We have also omitted the

process of formulating the proposal.

5. Performance Evaluation

In this section we present experimental results that

demonstrate that GridSim with the extensions discussed

in this work can be used to model and evaluate service

provisioning and resource allocation policies for

service-oriented Grids, and autonomic utility computing

environments. The experiments particularly measure

how the Catallaxy model, built on top of the discussed

framework, coordinates the use of services and

resources. We evaluate the allocation rate by identifying

the number of service requests that are satisfied and the

overhead imposed by the service and resource

negotiations.

5.1 Experimental Scenario

We consider an environment in which RPs provide

resource bundles and BSs require a particular resource

bundle for a given time slot to host the service and

 10

execute the service workload. The experiments have

been carried out considering a CS termed Workflow

Service (WFS) that requires two BSs, namely

Processing Service (PS) and Storage Service (SS).

These two BSs, in turn, require a unit of Processing

Bundle (PB) and a unit of Storage Bundle (SB)

respectively. A PB offered by a RP is composed of

multiple resources. Each resource in PB corresponds to

exactly one unit of PB required by a PS. A resource in a

PB has the following configuration: (p = 2, y =

1500MIPS, m = 1GB and s = 2GB). A resource in a SB

is given by: (p = 1, y = 1500MIPS, m = 2GB and s =

4GB).

We perform our experiments with varying numbers of

RPs, BSPs and CSPs. The parameters used in the

experiments are shown in TABLE I. The values for PS

Request Length (PSRL) and SS Request Length (SSRL)

are given by WSRL / 2 because we consider that WFS

first requires processing and further stores the results of

the processing activity. For simulating the workload of

PS and SS and obtaining the final time of the service

utilisation, we consider a simple approach. For example,

the workload generated by an invocation j of PS at RP i

is given in MIs by: WPSj = pj * yj * PSRLj where pj is the

number of processors required by the PS, yj is the

processor speed in MIPS and PSRLj is RS request

length.

5.2 Experimental Results

TABLE II describes the experiments performed and

the values used for the simulation of the service

application in GridSim using the Catallaxy economic

model and the presented service framework. The

parameters TBWS, WSRL, INSIZE and OUTSIZE use

uniform distributions. We consider that the BSPs are

able to provide and negotiate for one BS at a time.

Fig. 10 shows the allocation rate in the different

experiments. The allocation rate is above 96% in all

experiments. However, in Experiment 3 the allocation

rate is lower than in Experiment 4, even though more

resource providers are available. The reason for such

behaviour is that a provider reserves its services or

resources when it receives a CFP. Once an

announcement is sent by the provider who initiated the

negotiation, the providers that have not been selected

release their services or resources. As the number of

providers increase, more messages are sent, the

negotiations take more time and the resources are kept

reserved for a longer time. In Experiment 4 we reduce

the number of resource providers and determine that the

allocation rate increases.

Allocation Rate of Workflow Service Requests

94%

95%

96%

97%

98%

99%

100%

Exp. 1 Exp. 2 Exp. 3 Exp. 4

A
ll
o

c
a

ti
o

n
 r

a
te

Fig. 10 - Allocation rate of Workflow Service requests.

We then evaluate the impact of the negotiations on

the service provisioning process. The experiments

measure the amount of time spent on negotiation for a

BS. Fig. 11 shows the time spent in different scenarios.

We observed that the time spent is highly dependent on

the initial timeout during which the negotiator waits for

proposals, which in this case is 30 seconds (15 seconds

in negotiation for the BS and 15 seconds in negotiation

for the resource). We omitted this 30 second interval

from the results presented in the figure. In the scenarios

TABLE I
DESCRIPTION OF PARAMETERS USED IN THE EXPERIMENTS

Acronym Parameter

PWS Providers of Workflow Services
PPS Providers of Processing Basic Services
PSS Providers of Storage Basic Services
PPB Providers of Processing Resource Bundles

PSB Providers of Storage Resource Bundles
SI Service Instances Per WFS Provider

RU Resource Units Per Resource Provider
WSR Requests to Workflow Service

TBWS Time between arrivals of WS requests
WSRL WFS Request Length
PSRL PS Request Length
SSRL SS Request Length

INSIZE Input File Size
OUTSIZE Output File Size

TABLE II

VALUES FOR THE PARAMETERS FOR THE DIFFERENT EXPERIMENTS

Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4

PWS 10 20 50 50

PPS 10 20 50 50

PSS 10 20 50 50

PPB 10 20 50 20

PSB 10 20 50 20

SI 40 40 40 40

RU 1 1 1 1

WSR 1000 1000 1000 1000

TBWS 0~120s 0~120s 0~120s 0~120s

WSRL 30~60s 30~60s 30~60s 30~60s

INSIZE 30~50KB 30~50KB 30~50KB 30~50KB

OUTSIZE 100~200KB 100~200KB 100~200KB 100~200KB

 11

evaluated, we consider that users and service providers

are in different networks connected through a network

link with a bandwidth of 1Mbps while service providers

and resource providers are connected through another

network link with a bandwidth of 1Mbps. Both links

present a latency of 50 milliseconds, which we consider

to be representative of the latency in many wide area

networks.

Impact of Catallactic Negotiations on the Service

Provision Time

0

2

4

6

8

10

12

14

16

Exp. 1 Exp. 2 Exp. 3 Exp. 4

T
im

e
 i
n

 s
e

c
o

n
d

s

Fig. 11 - Amount of time spent in a Catallactic negotiation for a basic

service.

The time required to send proposals and to bargain to

achieve the final price is generally smaller than 10

seconds. The initial timeout can be reduced if the initial

negotiator knows how many providers have been

contacted and how many messages should be received.

However, we envision a scenario in which a P2P

network is used to broadcast calls for proposals and the

negotiator does not know exactly how many providers

will receive the proposals and send a reply.

6. Conclusion and Future Work

This paper describes a model for simulation of

service-oriented Grid applications, allowing the

decoupling of service negotiation and resource

management into two distinct layers. By decoupling

these into distinct layers, it is possible to model and

evaluate different strategies for both service

provisioning and resource allocation. The model also

allows the simulation and evaluation of policies for

negotiation of SLAs for service usage. Evaluation of

centralised and decentralised economic models is

enabled by extending the provisioning and acquisition

policies provided by our framework.

We present experimental results that demonstrate the

use of the framework for modelling and evaluation of a

decentralised economic bargaining mechanism, the

Catallaxy, for service and resource negotiation.

As future work, we would like to evaluate the

suitability of the framework for modelling large-scale

scenarios and improve the acquisition policies to

support advance reservation and co-allocation of Grid

resources. In addition, we would like to evaluate the

economic models considering dynamic environments

with varying failure probabilities for resources. We will

consider acquiring data from existing Grid test beds for

determining the failure probability of Grid resources and

include these in the Grid simulator.

In addition, we would like to incorporate models for

what can be called elastic containers or elastic VMs. In

these scenarios, the allocation policy of a utility data

centre, for instance, may decide for expanding the

amount of memory, storage and CPU of VMs in an AE

according to the service workload. We would like to

incorporate these VM models and enable the changes in

the configurations of VMs on the fly. These features can

enable the evaluation of varying provisioning policies.

Acknowledgment

We thank Anthony Sulistio, Krishna Nadiminti and

James Broberg from the University of Melbourne for

their help in extending GridSim and sharing their

thoughts on the topic. This work is supported by the

European Union, DEST and ARC Project grants.

Marcos’ PhD research is partially supported by NICTA.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New

Computing Infrastructure. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999.

[2] I. Foster, "Service-Oriented Science," Science, vol. 308, pp. 814-
817, 2005.

[3] M. P. Singh and M. N. Huhns, Service-Oriented Computing:

Semantics, Processes, Agents: John Wiley & Sons, Ltd., 2005.
[4] J. O. Kephart and D. M. Chess, "The Vision of Autonomic

Computing," in Computer. vol. 36: IEEE Computer Society
Press, 2003, pp. 41-50.

[5] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M.
Trubian, "Resource Management in the Autonomic Service-
Oriented Architecture," in 3rd IEEE International Conference

on Autonomic Computing (ICAC 2006), Dublin, Ireland, 2006,
pp. 84-92.

[6] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen,
"Autonomic Live Adaptation of Virtual Computational
Environments in a Multi-Domain Infrastructure," in 3rd IEEE

International Conference on Autonomic Computing (ICAC

2006), Dublin, Ireland, 2006, pp. 5-14.
[7] M. N. Bennani and D. A. Menascé, "Resource Allocation for

Autonomic Data Centers using Analytic Performance Models,"
in 2nd IEEE International Conference on Autonomic

Computing (ICAC 2005), Seattle, Washington, 2005, pp. 229-
240.

[8] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goya, "Dynamic
Provisioning of Multi-tier Internet Applications," in 2nd IEEE

 12

International Conference on Autonomic Computing (ICAC

2005), Seattle, Washington, 2005, pp. 217-228.
[9] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, "Utility

Functions in Autonomic Systems," in International Conference

on Autonomic Computing (ICAC 2004), 2004, pp. 70-77.
[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, "Xen and the art of
virtualization," in 19th ACM Symposium on Operating Systems

Principles, Bolton Landing, NY, USA, 2003, pp. 164-177.
[11] P. Fabian, J. Palmer, J. Richardson, M. Bowman, P. Brett, R.

Knauerhase, J. Sedayao, J. Vicente, C.-C. Koh, and S. Rungta,
"Virtualization in the Enterprise," Intel Technology Journal, vol.
10, pp. 227-242, August 2006.

[12] C. Low and A. Byde, "Market-Based Approaches to Utility
Computing," Internet Systems and Storage Laboratory, Hewlett
Packard Laboratories Bristol, Technical Report HPL-2006-23
February 2006.

[13] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K.
Stockinger, and F. Zini, "Simulation of Dynamic Grid
Replication Strategies in OptorSim," in 3rd International

Workshop on Grid Computing (GRID 2002), London, UK,
2002, pp. 46-57.

[14] H. Casanova, "Simgrid: a toolkit for the simulation of
application scheduling," in 1st IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid 2001),
Brisbane, Australia, 2001, pp. 430-437.

[15] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.
Taura, and A. Chien, "The MicroGrid: a Scientific Tool for
Modeling Computational Grids," in ACM/IEEE Supercomputing

2000 Conference (SC'00), Dallas, USA, 2002, pp. 53-53.
[16] A. Sulistio and R. Buyya, "A Grid Simulation Infrastructure

Supporting Advance Reservation," in 16th International

Conference on Parallel and Distributed Computing and Systems

(PDCS 2004), MIT Cambridge, Boston, USA, 2004, pp. 1-7.
[17] R. Buyya and M. Murshed, "GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource Management
and Scheduling for Grid Computing," in The Journal of

Concurrency and Computation: Practice and Experience

(CCPE). vol. 14, 2002, pp. 1175–1220.
[18] L. Grit, D. Inwin, A. Yumerefendi, and J. Chase, "Virtual

Machine Hosting for Networked Clusters: Building the
Foundations for 'Autonomic' Orchestration," in 1st International

Workshop on Virtualization Technology in Distributed

Computing (VTDC 2006) - held in conjunction with SC06

 Tampa, Florida 2006.
[19] B. Urgaonkar, P. Shenoy, and T. Roscoe, "Resource

overbooking and application profiling in shared hosting
platforms," in 5th symposium on Operating systems design and

implementation, Boston, Massachusetts, 2002, pp. 239-254.
[20] F. A. v. Hayek, The collected works of F.A. Hayek. Chicago:

University of Chicago Press, 1989.
[21] H. A. Simon, Models of Man - Social and Rational. New York:

John Wiley & Sons, 1957.
[22] T. Eymann, O. Ardaiz, M. Catalano, P. Chacin, I. Chao, F.

Freitag, M. Gallegati, G. Giulioni, L. Joita, L. Navarro, D. G.
Neumann, O. Rana, M. Reinicke, R. C. Schiaffino, B. Schnizler,
W. Streitberger, D. Veit, and F. Zini, "Catallaxy-based Grid
Markets," International Journal on Multiagent and Grid

Systems, Special Issue on Smart Grid Technologies & Market

Models, vol. 1, pp. 297-307, 2005.
[23] M. Reinicke, W. Streitberger, and T. Eymann, "Scalability

Analysis of Matchmakers in Self-Optimizing Computing
Networks," Journal of Autonomic and Trusted Computing

(JoATC), 2005.

[24] J. S. Rosenschein and G. Zlotkin, Rules of Encounter:

Designing Conventions for Automated Negotiation Among

Computers. Cambridge: MIT Press, 1994.

